-
Notifications
You must be signed in to change notification settings - Fork 257
/
Copy pathtransp_nofn.py
61 lines (45 loc) · 1.5 KB
/
transp_nofn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
##@file transp_nofn.py
# @brief a model for the transportation problem
"""
Model for solving a transportation problem:
minimize the total transportation cost for satisfying demand at
customers, from capacitated facilities.
Data:
I - set of customers
J - set of facilities
c[i,j] - unit transportation cost on arc (i,j)
d[i] - demand at node i
M[j] - capacity
Copyright (c) by Joao Pedro PEDROSO and Mikio KUBO, 2012
"""
from pyscipopt import Model, quicksum
d = {1: 80, 2: 270, 3: 250, 4: 160, 5: 180} # demand
I = d.keys()
M = {1: 500, 2: 500, 3: 500} # capacity
J = M.keys()
c = {(1, 1): 4, (1, 2): 6, (1, 3): 9, # cost
(2, 1): 5, (2, 2): 4, (2, 3): 7,
(3, 1): 6, (3, 2): 3, (3, 3): 4,
(4, 1): 8, (4, 2): 5, (4, 3): 3,
(5, 1): 10, (5, 2): 8, (5, 3): 4,
}
model = Model("transportation")
# Create variables
x = {}
for i in I:
for j in J:
x[i, j] = model.addVar(vtype="C", name="x(%s,%s)" % (i, j))
# Demand constraints
for i in I:
model.addCons(sum(x[i, j] for j in J if (i, j) in x) == d[i], name="Demand(%s)" % i)
# Capacity constraints
for j in J:
model.addCons(sum(x[i, j] for i in I if (i, j) in x) <= M[j], name="Capacity(%s)" % j)
# Objective
model.setObjective(quicksum(c[i, j] * x[i, j] for (i, j) in x), "minimize")
model.optimize()
print("Optimal value:", model.getObjVal())
EPS = 1.e-6
for (i, j) in x:
if model.getVal(x[i, j]) > EPS:
print("sending quantity %10s from factory %3s to customer %3s" % (model.getVal(x[i, j]), j, i))