-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPPOLSTM.py
400 lines (293 loc) · 11.6 KB
/
PPOLSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#!/usr/bin/env python
# coding: utf-8
# In[34]:
from typing import List, Tuple
import pytorch_lightning as pl
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.utilities import DistributedType
from pytorch_lightning.loggers import TensorBoardLogger
import torch
from torch import Tensor, nn
from torch.utils.data import DataLoader
import torch.optim as optim
from torch.optim.optimizer import Optimizer
from torch.utils.data.dataset import IterableDataset
from torch.distributions import Categorical
import gym
from gym_simplifiedtetris.envs import SimplifiedTetrisBinaryEnv as Tetris
import numpy as np
from pytorch_lightning.callbacks import Callback
import multiprocessing
from bayes_opt import BayesianOptimization
from bayes_opt.logger import JSONLogger
from bayes_opt.event import Events
from collections import deque
# In[35]:
class CriticNet(nn.Module):
def __init__(self, obs_size, hidden_size = 100):
super().__init__()
print(obs_size)
self.lstm = nn.Sequential(nn.LSTM(input_size=obs_size, hidden_size=4, batch_first=True))
self.critic = nn.Sequential(
nn.Linear(16, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, 1)
)
def forward(self, x):
timesteps = self.lstm(x)
timesteps = timesteps[0].contiguous()
timesteps = timesteps.view(timesteps.shape[0],-1)
value = self.critic(timesteps)
return value
class ActorNet(nn.Module):
def __init__(self, obs_size, n_actions, depth, hidden_size = 64):
super().__init__()
print(obs_size)
self.lstm = nn.Sequential(nn.LSTM(input_size=obs_size, hidden_size=4, batch_first=True))
self.actor = nn.Sequential(
nn.Linear(16, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, n_actions)
)
def forward(self, x):
timesteps = self.lstm(x)
timesteps = timesteps[0].contiguous()
timesteps = timesteps.view(timesteps.shape[0],-1)
logits = self.actor(timesteps)
logits = torch.nan_to_num(logits)
dist = Categorical(logits=logits)
action = dist.sample()
return dist, action
class ActorCritic():
def __init__(self, critic, actor):
self.critic = critic
self.actor = actor
@torch.no_grad()
def __call__(self, state: torch.Tensor):
dist, action = self.actor(state)
probs = dist.log_prob(action)
val = self.critic(state)
return dist, action, probs, val
# In[36]:
class RLDataSet(IterableDataset):
def __init__(self, batch_maker):
self.batch_maker = batch_maker
def __iter__(self):
return self.batch_maker()
# In[37]:
class PPOLightning(LightningModule):
def __init__(
self,
alr,
clr,
batch_size,
clip_eps,
lamb ,
epoch_steps,
gamma,
depth,
writer
):
self.writer = writer
writer = -1
super().__init__()
self.save_hyperparameters()
print("hparams:",self.hparams)
self.env = Tetris(grid_dims=(10, 10), piece_size=2)
self.ep_step = 0
obs_size = self.env.observation_space.shape[0]
n_actions = self.env.action_space.n
print("actions",n_actions)
self.state = deque(maxlen=4)
self.state.append(torch.Tensor(np.ones(obs_size)))
self.state.append(torch.Tensor(np.ones(obs_size)))
self.state.append(torch.Tensor(np.ones(obs_size)))
self.state.append(torch.Tensor(self.env.reset()))
self.batch_states = []
self.batch_actions = []
self.batch_probs = []
self.batch_advs = []
self.batch_vals = []
self.ep_rewards = []
self.ep_rewards_all = []
self.ep_vals = []
self.epoch_rewards = []
self.avg_reward = 0
self.avg_ep_reward = 0
self.last_ep_logged = 0
self.critic = CriticNet(obs_size)
self.actor = ActorNet(obs_size,n_actions,self.hparams.depth)
self.agent = ActorCritic(self.critic, self.actor)
def forward(self, x):
dist, action = self.actor(x)
val = self.critic(x)
return dist, action, val
def act_loss(self,state,action,prob_old,adv):
dist, _ = self.actor(state)
prob = dist.log_prob(action)
ratio = torch.exp(prob - prob_old)
#PPO update
clip = torch.clamp(ratio, 1 - self.hparams.clip_eps, 1 + self.hparams.clip_eps) * adv
#negative gradient descent - gradient ascent
loss = -(torch.min(ratio * adv, clip)).mean()
return loss
def crit_loss(self,state,val):
val_new = self.critic(state)
#MSE
loss = (val - val_new).pow(2).mean()
return loss
def compute_gae(self, rewards, values, next_val):
rs = rewards
vals = values + [next_val]
x = []
for i in range(len(rs)-1):
x.append(rs[i]+self.hparams.gamma*vals[i+1] - vals[i])
a = self.compute_reward(x, self.hparams.gamma * self.hparams.lamb)
return a
def compute_reward(self,rewards, gamma):
rs = []
sum_rs = 0
for r in reversed(rewards):
sum_rs = (sum_rs * gamma) + r
rs.append(sum_rs)
return list(reversed(rs))
def make_batch(self):
for i in range(self.hparams.epoch_steps):
_, action, probs, val = self.agent(torch.stack(list(self.state))[None,...])
next_state, reward, done, _ = self.env.step(action.item())
self.ep_step += 1
self.batch_states.append(torch.stack(list(self.state)))
self.batch_actions.append(action)
self.batch_probs.append(probs)
self.ep_rewards.append(reward)
self.ep_vals.append(val.item())
self.state.append(torch.Tensor(next_state))
end = i == (self.hparams.epoch_steps -1)
if done or end:
if end and not done:
#if epoch ends before terminal state, bootstrap value
with torch.no_grad():
#print("epoch ended early")
_,_,_,val = self.agent(torch.stack(list(self.state))[None,...])
next_val = val.item()
else:
next_val = 0
#compute batch discounted rewards
self.ep_rewards.append(next_val)
self.batch_vals += self.compute_reward(self.ep_rewards,self.hparams.gamma)[:-1]
self.batch_advs += self.compute_gae(self.ep_rewards,self.ep_vals, next_val)
self.epoch_rewards.append(sum(self.ep_rewards))
#print("Total for Ep :",sum(self.ep_rewards))
self.ep_rewards_all.append(sum(self.ep_rewards))
self.ep_rewards.clear()
self.ep_vals.clear()
self.ep_step = 0
env = self.env.reset()
self.state.append(torch.Tensor(np.zeros(len(env))))
self.state.append(torch.Tensor(np.zeros(len(env))))
self.state.append(torch.Tensor(np.zeros(len(env))))
self.state.append(torch.Tensor(env))
if end:
self.avg_ep_reward = sum(self.epoch_rewards)/len(self.epoch_rewards)
data = zip(self.batch_states,
self.batch_actions,
self.batch_probs,
self.batch_vals,
self.batch_advs)
for (s, a, p, v, ad) in data:
yield s, a, p, v, ad
#logs
self.epoch_rewards.clear()
self.batch_states.clear()
self.batch_actions.clear()
self.batch_probs.clear()
self.batch_vals.clear()
self.batch_advs.clear()
def training_step(self, batch, batch_idx, optimizer_idx):
state,action,prob_old,val,adv = batch
# normalize adv
adv = (adv - adv.mean())/adv.std()
for i in range(self.last_ep_logged,len(self.ep_rewards_all)):
self.log("ep_reward",self.ep_rewards_all[i],prog_bar=True, on_step=False, on_epoch=True, logger=True)
self.last_ep_logged += 1
self.log("avg_ep_reward", self.avg_ep_reward, prog_bar=True, on_step=False, on_epoch=True, logger=True)
self.log("epoch_reward", sum(self.epoch_rewards), prog_bar=True, on_step=True, on_epoch=True, logger=True)
if optimizer_idx == 0:
loss = self.act_loss(state, action, prob_old, adv)
self.log('act_loss', loss, on_step=False, on_epoch=True, prog_bar=True,logger=True)
self.writer.writerow([self.global_step, self.avg_ep_reward, loss.unsqueeze(0).item()])
return loss
elif optimizer_idx == 1:
loss = self.crit_loss(state,val)
self.log('crit_loss', loss, on_step=False, on_epoch=True, prog_bar=True,logger=True)
self.writer.writerow([self.global_step, self.avg_ep_reward, loss.unsqueeze(0).item()])
return loss
def configure_optimizers(self) -> List[Optimizer]:
a_opt = optim.Adam(self.actor.parameters(), lr=self.hparams.alr)
c_opt = optim.Adam(self.critic.parameters(), lr=self.hparams.clr)
return a_opt,c_opt
def __dataloader(self):
dataset = RLDataSet(self.make_batch)
dataloader = DataLoader(dataset=dataset, batch_size=self.hparams.batch_size)
return dataloader
def train_dataloader(self):
return self.__dataloader()
# In[38]:
class ReturnCallback(Callback):
def __init__(self ):
self.total = []
def on_train_epoch_end(self, trainer, pl_module):
print("Callback")
self.total.append(trainer.callback_metrics['avg_ep_reward'].item())
def get_total(self):
return self.total
from pathlib import Path
import csv
import os
def pickFileName():
Path("log/trainingvalsPPO/").mkdir(parents=True, exist_ok=True)
files = os.listdir('log/trainingvalsPPO/')
return '{}.csv'.format(len(files)+1)
num_epochs=25000
f = open('log/trainingvalsPPO/{}'.format(pickFileName()), 'w+')
writer = csv.writer(f)
model = PPOLightning(
6.99e-4,#alr,
7.07e-4,#clr,
80,#batch_size,
0.208,#clip_eps,
0.953,#lamb,
2048, #epoch steps
0.99, #gamma
2,#depth,
writer
)
tb_logger = TensorBoardLogger("log/")
trainer = Trainer(
gpus=0,
max_epochs=num_epochs,
logger=tb_logger)
trainer.fit(model)
print("finished training")
f.close()
totals = []
env = Tetris(grid_dims=(10, 10), piece_size=4)
state = deque(maxlen=4)
with torch.no_grad():
for i in range(10):
done = 0
total = 0
step = 0
reset = env.reset()
state.append(torch.Tensor(np.zeros(len(reset))))
state.append(torch.Tensor(np.zeros(len(reset))))
state.append(torch.Tensor(np.zeros(len(reset))))
state.append(torch.Tensor(reset))
while not done:
_,action,_ = model(torch.flatten(torch.stack(list(state))))
next_state, reward, done, _ = env.step(action.item())
state.append(torch.Tensor(next_state))
total += reward # print("stepped",action.item(),done)
step +=1
totals.append(total)
print("average over final games:",np.average(totals))