-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
388 lines (332 loc) · 16.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import os
import json
import time
import types
import inspect
import argparse
import datetime
import numpy as np
from pathlib import Path
import timm.optim.optim_factory as optim_factory
from torch.utils.tensorboard import SummaryWriter
import IMDLBenCo.training_scripts.utils.misc as misc
from IMDLBenCo.registry import MODELS, POSTFUNCS
from IMDLBenCo.transforms import get_albu_transforms
from IMDLBenCo.datasets import ManiDataset, JsonDataset, BalancedDataset
from IMDLBenCo.evaluation import PixelF1, ImageF1 # TODO You can select evaluator you like here
from IMDLBenCo.training_scripts.tester import test_one_epoch
from IMDLBenCo.training_scripts.trainer import train_one_epoch
from mesorch import Mesorch
from mesorch_p import Mesorch_P
def get_args_parser():
parser = argparse.ArgumentParser('IMDLBenCo training launch!', add_help=True)
# ++++++++++++TODO++++++++++++++++
# 这里是每个模型定制化的input区域,包括load与训练模型,模型的magic number等等
# 需要根据你们的模型定制化修改这里
# 目前这里的内容都是仅仅给IML-ViT用的
# parser.add_argument('--vit_pretrain_path', default = '/root/workspace/IML-ViT/pretrained-weights/mae_pretrain_vit_base.pth', type=str, help='path to vit pretrain model by MAE')
# parser.add_argument('--edge_lambda', default=20, type=float,
# help='hyper-parameter of the weight for proposed edge loss.')
# parser.add_argument('--predict_head_norm', default="BN", type=str,
# help="norm for predict head, can be one of 'BN', 'LN' and 'IN' (batch norm, layer norm and instance norm). It may influnce the result on different machine or datasets!")
# -------------------------------
# Model name
parser.add_argument('--model', default=None, type=str,
help='The name of applied model', required=True)
# 可以接受label的模型是否接受label输入,并启用相关的loss。
parser.add_argument('--if_predict_label', action='store_true',
help='Does the model that can accept labels actually take label input and enable the corresponding loss function?')
# ----Dataset parameters 数据集相关的参数----
parser.add_argument('--image_size', default=512, type=int,
help='image size of the images in datasets')
parser.add_argument('--if_padding', action='store_true',
help='padding all images to same resolution.')
parser.add_argument('--if_resizing', action='store_true',
help='resize all images to same resolution.')
# If edge mask activated
parser.add_argument('--edge_mask_width', default=None, type=int,
help='Edge broaden size (in pixels) for edge maks generator.')
parser.add_argument('--data_path', default='/root/Dataset/CASIA2.0/', type=str,
help='dataset path, should be our json_dataset or mani_dataset format. Details are in readme.md')
parser.add_argument('--test_data_path', default='/root/Dataset/CASIA1.0', type=str,
help='test dataset path, should be our json_dataset or mani_dataset format. Details are in readme.md')
# ------------------------------------
# training related
parser.add_argument('--batch_size', default=1, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--test_batch_size', default=2, type=int,
help="batch size for testing")
parser.add_argument('--epochs', default=200, type=int)
# Test related
parser.add_argument('--no_model_eval', action='store_true',
help='Do not use model.eval() during testing.')
parser.add_argument('--test_period', default=4, type=int,
help="how many epoch per testing one time")
# 一个epoch在tensorboard中打几个loss的data point
parser.add_argument('--log_per_epoch_count', default=20, type=int,
help="how many loggings (data points for loss) per testing epoch in Tensorboard")
parser.add_argument('--find_unused_parameters', action='store_true',
help='find_unused_parameters for DDP. Mainly solve issue for model with image-level prediction but not activate during training.')
# 不启用AMP(自动精度)进行训练
parser.add_argument('--if_not_amp', action='store_false',
help='Do not use automatic precision.')
parser.add_argument('--accum_iter', default=16, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=4, metavar='N',
help='epochs to warmup LR')
# ----输出的日志相关的参数-----------
parser.add_argument('--output_dir', default='./output_dir',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output_dir',
help='path where to tensorboard log')
# -----------------------
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint, input the path of a ckpt.')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=1, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
args, remaining_args = parser.parse_known_args()
# 获取对应的模型类
model_class = MODELS.get(args.model)
# 根据模型类动态创建参数解析器
model_parser = misc.create_argparser(model_class)
model_args = model_parser.parse_args(remaining_args)
return args, model_args
def main(args, model_args):
# init parameters for distributed training
misc.init_distributed_mode(args)
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("=====args:=====")
print("{}".format(args).replace(', ', ',\n'))
print("=====Model args:=====")
print("{}".format(model_args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
misc.seed_torch(seed)
torch.manual_seed(seed)
np.random.seed(seed)
train_transform = get_albu_transforms('train')
test_transform = get_albu_transforms('test')
# get post function (if have)
post_function_name = f"{args.model}_post_func".lower()
print(f"Post function check: {post_function_name}")
print(POSTFUNCS)
if POSTFUNCS.has(post_function_name):
post_function = POSTFUNCS.get(post_function_name)
else:
post_function = None
# ---- dataset with crop augmentation ----
if os.path.isdir(args.data_path):
dataset_train = ManiDataset(
args.data_path,
is_padding=args.if_padding,
is_resizing=args.if_resizing,
output_size=(args.image_size, args.image_size),
common_transforms=train_transform,
edge_width=args.edge_mask_width,
post_funcs=post_function
)
else:
try:
dataset_train = JsonDataset(
args.data_path,
is_padding=args.if_padding,
is_resizing=args.if_resizing,
output_size=(args.image_size, args.image_size),
common_transforms=train_transform,
edge_width=args.edge_mask_width,
post_funcs=post_function
)
except:
dataset_train = BalancedDataset(
args.data_path,
is_padding=args.if_padding,
is_resizing=args.if_resizing,
output_size=(args.image_size, args.image_size),
common_transforms=train_transform,
edge_width=args.edge_mask_width,
post_funcs=post_function
)
if os.path.isdir(args.test_data_path):
dataset_test = ManiDataset(
args.test_data_path,
is_padding=args.if_padding,
is_resizing=args.if_resizing,
output_size=(args.image_size, args.image_size),
common_transforms=test_transform,
edge_width=args.edge_mask_width,
post_funcs=post_function
)
else:
dataset_test = JsonDataset(
args.test_data_path,
is_padding=args.if_padding,
is_resizing=args.if_resizing,
output_size=(args.image_size, args.image_size),
common_transforms=test_transform,
edge_width=args.edge_mask_width,
post_funcs=post_function
)
# ------------------------------------
print(dataset_train)
print(dataset_test)
if args.distributed:
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_test = torch.utils.data.DistributedSampler(
dataset_test, num_replicas=num_tasks, rank=global_rank, shuffle=False, drop_last=True
)
print("Sampler_train = %s" % str(sampler_train))
print("Sampler_test = %s" % str(sampler_test))
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_test = torch.utils.data.RandomSampler(dataset_test)
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, sampler=sampler_test,
batch_size=args.test_batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
# ========define the model directly==========
# model = IML_ViT(
# vit_pretrain_path = model_args.vit_pretrain_path,
# predict_head_norm= model_args.predict_head_norm,
# edge_lambda = model_args.edge_lambda
# )
# --------------- or -------------------------
# Init model with registry
model = MODELS.get(args.model)
# Filt usefull args
if isinstance(model,(types.FunctionType, types.MethodType)):
model_init_params = inspect.signature(model).parameters
else:
model_init_params = inspect.signature(model.__init__).parameters
combined_args = {k: v for k, v in vars(args).items() if k in model_init_params}
combined_args.update({k: v for k, v in vars(model_args).items() if k in model_init_params})
model = model(**combined_args)
# ============================================
evaluator_list = [
PixelF1(threshold=0.5, mode="origin"),
# ImageF1(threshold=0.5)
]
if args.distributed:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model.to(device)
model_without_ddp = model
print("Model = %s" % str(model_without_ddp))
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=args.find_unused_parameters)
model_without_ddp = model.module
# following timm: set wd as 0 for bias and norm layers
args.opt='AdamW'
args.betas=(0.9, 0.999)
args.momentum=0.9
optimizer = optim_factory.create_optimizer(args, model_without_ddp)
print(optimizer)
loss_scaler = misc.NativeScalerWithGradNormCount()
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
best_evaluate_metric_value = 0
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, data_loader_train,
optimizer, device, epoch, loss_scaler,
log_writer=log_writer,
log_per_epoch_count=args.log_per_epoch_count,
args=args
)
# saving checkpoint
if args.output_dir and (epoch % 2 == 0 or epoch + 1 == args.epochs):
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
optimizer.zero_grad()
if epoch % args.test_period == 0 or epoch + 1 == args.epochs:
test_stats = test_one_epoch(
model,
data_loader = data_loader_test,
evaluator_list=evaluator_list,
device = device,
epoch = epoch,
log_writer=log_writer,
args = args
)
evaluate_metric_for_ckpt = evaluator_list[0].name
evaluate_metric_value = test_stats[evaluate_metric_for_ckpt]
if evaluate_metric_value > best_evaluate_metric_value :
best_evaluate_metric_value = evaluate_metric_value
print(f"Best {evaluate_metric_for_ckpt} = {best_evaluate_metric_value}")
if epoch > 35:
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,}
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, 'epoch': epoch,}
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args, model_args = get_args_parser()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args, model_args)