forked from richmondu/libfaceid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenrollment.py
279 lines (221 loc) · 8.83 KB
/
enrollment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import sys
import argparse
import cv2
import numpy as np
import os
import datetime
import math
import imutils
from libfaceid.detector import FaceDetectorModels, FaceDetector
from libfaceid.encoder import FaceEncoderModels, FaceEncoder
from libfaceid.classifier import FaceClassifierModels
# Set the window name
WINDOW_NAME = "Facial_Recognition"
# Set the input directories
INPUT_DIR_DATASET = "datasets"
INPUT_DIR_MODEL_DETECTION = "models/detection/"
INPUT_DIR_MODEL_ENCODING = "models/encoding/"
INPUT_DIR_MODEL_TRAINING = "models/training/"
INPUT_DIR_MODEL_ESTIMATION = "models/estimation/"
# Set width and height
RESOLUTION_QVGA = (320, 240)
RESOLUTION_VGA = (640, 480)
RESOLUTION_HD = (1280, 720)
RESOLUTION_FULLHD = (1920, 1080)
def cam_init(cam_index, width, height):
cap = cv2.VideoCapture(cam_index)
if sys.version_info < (3, 0):
cap.set(cv2.cv.CV_CAP_PROP_FPS, 30)
cap.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, width)
cap.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, height)
else:
cap.set(cv2.CAP_PROP_FPS, 30)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
return cap
def ensure_directory(file_path):
directory = os.path.dirname("./" + file_path)
if not os.path.exists(directory):
os.makedirs(directory)
def label_face(frame, face_rect, face_id=None, confidence=0):
(x, y, w, h) = face_rect
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 255), 1)
if face_id is not None:
cv2.putText(frame, "{} {:.2f}%".format(face_id, confidence),
(x+5,y+h-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
def save_video(saveVideo, out, resolution, filename):
if saveVideo == True:
print("video recording ended!")
out.release()
out = None
saveVideo = False
else:
print("video recording started...")
print("Press space key to stop recording!")
fourcc = cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')
(h, w) = resolution
out = cv2.VideoWriter(filename, fourcc, 12, (w, h))
saveVideo = True
return saveVideo, out
# inner
s1={}
for i in range(120):
for j in range(2):
if (j%2==0):
s1[i,j]=int(160+105*math.cos(3.0*i*3.14/180))
else:
s1[i,j]=int(120+105*math.sin(3.0*i*3.14/180))
#print(s1[i, j])
# outer
s2={}
for i in range(120):
for j in range(2):
if (j%2==0):
s2[i,j]=int(160+120*math.cos(3.0*i*3.14/180))
else:
s2[i,j]=int(120+120*math.sin(3.0*i*3.14/180))
#print(s2[i, j])
def process_faceenrollment(model_detector, cam_index, cam_resolution):
# Initialize the camera
camera = cam_init(cam_index, cam_resolution[0], cam_resolution[1])
try:
# Initialize face detection
face_detector = FaceDetector(model=model_detector, path=INPUT_DIR_MODEL_DETECTION)
except:
print("Warning, check if models and trained dataset models exists!")
print("")
print("Press SPACEBAR to record video or ENTER to capture picture!")
print("Make sure that your face is inside the circular region!")
print("")
saveVideo = False
out = None
color_recording = (255,255,255)
is_windows = (os.name == 'nt')
while (True):
# Capture frame from webcam
ret, frame = camera.read()
if frame is None:
print("Error, check if camera is connected!")
break
# Detect and identify faces in the frame
faces = face_detector.detect(frame)
for (index, face) in enumerate(faces):
(x, y, w, h) = face
#print("{} {} {} {}".format(x,y,w,h))
if saveVideo and len(faces) == 1:
out.write(frame)
# Set text and bounding box on face
label_face(frame, (x, y, w, h))
# Process 1 face only
break
mask = np.full((frame.shape[0], frame.shape[1]), 0, dtype=np.uint8) # mask is only
cv2.circle(mask, (int(cam_resolution[0]/2),int(cam_resolution[1]/2)), 110, (255,255,255), -1, cv2.LINE_AA)
fg = cv2.bitwise_or(frame, frame, mask=mask)
cv2.circle(fg, (int(cam_resolution[0]/2),int(cam_resolution[1]/2)), 110, color_recording, 15, cv2.LINE_AA)
for i in range(120):
cv2.line(fg, (s1[i,0], s1[i,1]), (s2[i,0], s2[i,1]), (0, 0, 0), 2, cv2.LINE_AA)
# Display updated frame
if is_windows:
fg = imutils.resize(fg, height=480)
cv2.imshow(WINDOW_NAME, fg)
# Check for user actions
keyPressed = cv2.waitKey(1) & 0xFF
if keyPressed == 27: # ESC to exit
break
elif keyPressed == 32: # Space to save video
saveVideo, out = save_video(saveVideo, out, frame.shape[:2], WINDOW_NAME + ".avi")
if out is not None:
color_recording = (0, 255, 0)
else:
color_recording = (0, 0, 0)
break
elif keyPressed == 13: # Enter to capture picture
cv2.imwrite(WINDOW_NAME + "_" + datetime.datetime.now().strftime("%Y%m%d_%H%M%S") + ".jpg", frame);
# Release the camera
camera.release()
cv2.destroyAllWindows()
def video_to_images(model_detector, dir, name, one_image_only=False):
ensure_directory(dir + "/" + name + "/")
try:
video = cv2.VideoCapture(WINDOW_NAME + ".avi")
if video is None:
return
except:
return
try:
# Initialize face detection
face_detector = FaceDetector(model=model_detector, path=INPUT_DIR_MODEL_DETECTION)
except:
print("Warning, check if models and trained dataset models exists!")
i = 1
while (True):
ret, frame = video.read()
if frame is None:
break
faces = face_detector.detect(frame)
if len(faces) == 1:
cv2.imwrite("{}/{}/{}.jpg".format(dir, name, i), frame);
i += 1
if one_image_only:
break
#cv2.imshow(WINDOW_NAME, frame)
#cv2.waitKey(1)
video.release()
cv2.destroyAllWindows()
def run(cam_index, cam_resolution, name):
# detector=FaceDetectorModels.HAARCASCADE
# detector=FaceDetectorModels.DLIBHOG
# detector=FaceDetectorModels.DLIBCNN
# detector=FaceDetectorModels.SSDRESNET
detector=FaceDetectorModels.MTCNN
# detector=FaceDetectorModels.FACENET
process_faceenrollment(detector, cam_index, cam_resolution)
print("")
print("Processing of video recording started...")
# video_to_images(detector, "x" + INPUT_DIR_DATASET, name)
# video_to_images(detector, INPUT_DIR_DATASET, name, one_image_only=True)
video_to_images(detector, INPUT_DIR_DATASET, name)
print("Processing of video recording completed!")
print("Make sure to train the new datasets before testing!")
print("")
def main(args):
if sys.version_info < (3, 0):
print("Error: Python2 is slow. Use Python3 for max performance.")
return
cam_index = int(args.webcam)
resolutions = [ RESOLUTION_QVGA, RESOLUTION_VGA, RESOLUTION_HD, RESOLUTION_FULLHD ]
try:
cam_resolution = resolutions[int(args.resolution)]
except:
cam_resolution = RESOLUTION_VGA
if args.detector and args.name:
try:
detector = FaceDetectorModels(int(args.detector))
name = str(args.name)
print( "Parameters: {}".format(detector))
process_faceenrollment(detector, cam_index, cam_resolution)
print("")
print("Processing of video recording started...")
#video_to_images(detector, "x" + INPUT_DIR_DATASET, name)
#video_to_images(detector, INPUT_DIR_DATASET, name, one_image_only=True)
video_to_images(detector, INPUT_DIR_DATASET, name)
print("Processing of video recording completed!")
print("Make sure to train the new datasets before testing!")
print("")
except:
print( "Invalid parameter" )
return
run(cam_index, cam_resolution, str(args.name))
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--detector', required=False, default=0,
help='Detector model to use. Options: 0-HAARCASCADE, 1-DLIBHOG, 2-DLIBCNN, 3-SSDRESNET, 4-MTCNN, 5-FACENET')
parser.add_argument('--webcam', required=False, default=0,
help='Camera index to use. Default is 0. Assume only 1 camera connected.)')
parser.add_argument('--resolution', required=False, default=0,
help='Camera resolution to use. Default is 0. Options: 0-QVGA, 1-VGA, 2-HD, 3-FULLHD')
parser.add_argument('--name', required=False, default="Unknown",
help='Name of person to enroll')
return parser.parse_args(argv)
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))