forked from richmondu/libfaceid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
134 lines (108 loc) · 5.63 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import sys
import argparse
from libfaceid.detector import FaceDetectorModels, FaceDetector
from libfaceid.encoder import FaceEncoderModels, FaceEncoder
from libfaceid.classifier import FaceClassifierModels
INPUT_DIR_DATASET = "datasets"
INPUT_DIR_MODEL_DETECTION = "models/detection/"
INPUT_DIR_MODEL_ENCODING = "models/encoding/"
INPUT_DIR_MODEL_TRAINING = "models/training/"
OUTPUT_DIR_AUDIOSET = "audiosets/"
INPUT_DIR_MODEL_SYNTHESIS = "models/synthesis/"
def ensure_directory(file_path):
directory = os.path.dirname("./" + file_path)
if not os.path.exists(directory):
os.makedirs(directory)
def get_dataset_names(file_path):
for (_d, names, _f) in os.walk(file_path):
return names
return None
def train_recognition(model_detector, model_encoder, model_classifier, verify):
ensure_directory(INPUT_DIR_DATASET)
print("")
names = get_dataset_names(INPUT_DIR_DATASET)
if names is not None:
print("Names " + str(names))
for name in names:
for (_d, _n, files) in os.walk(INPUT_DIR_DATASET + "/" + name):
print(name + ": " + str(files))
print("")
ensure_directory(INPUT_DIR_MODEL_TRAINING)
face_detector = FaceDetector(model=model_detector, path=INPUT_DIR_MODEL_DETECTION)
face_encoder = FaceEncoder(model=model_encoder, path=INPUT_DIR_MODEL_ENCODING, path_training=INPUT_DIR_MODEL_TRAINING, training=True)
face_encoder.train(face_detector, path_dataset=INPUT_DIR_DATASET, verify=verify, classifier=model_classifier)
#print("train_recognition completed")
# generate audio samples for image datasets using text to speech synthesizer
def train_audiosets(model_speech_synthesizer):
ensure_directory(OUTPUT_DIR_AUDIOSET)
from libfaceid.speech_synthesizer import SpeechSynthesizer # lazy loading
speech_synthesizer = SpeechSynthesizer(model=model_speech_synthesizer, path=INPUT_DIR_MODEL_SYNTHESIS, path_output=OUTPUT_DIR_AUDIOSET)
speech_synthesizer.synthesize_datasets(INPUT_DIR_DATASET)
#speech_synthesizer.synthesize_name("libfaceid")
#speech_synthesizer.synthesize("Hello World", "World.wav")
def run():
# detector=FaceDetectorModels.HAARCASCADE
# detector=FaceDetectorModels.DLIBHOG
# detector=FaceDetectorModels.DLIBCNN
# detector=FaceDetectorModels.SSDRESNET
detector=FaceDetectorModels.MTCNN
# detector=FaceDetectorModels.FACENET
encoder=FaceEncoderModels.LBPH
# encoder=FaceEncoderModels.OPENFACE
# encoder=FaceEncoderModels.DLIBRESNET
# encoder=FaceEncoderModels.FACENET
classifier=FaceClassifierModels.NAIVE_BAYES
# classifier=FaceClassifierModels.LINEAR_SVM
# classifier=FaceClassifierModels.RBF_SVM
# classifier=FaceClassifierModels.NEAREST_NEIGHBORS
# classifier=FaceClassifierModels.DECISION_TREE
# classifier=FaceClassifierModels.RANDOM_FOREST
# classifier=FaceClassifierModels.NEURAL_NET
# classifier=FaceClassifierModels.ADABOOST
# classifier=FaceClassifierModels.QDA
train_recognition(detector, encoder, classifier, True)
print( "\nImage dataset training completed!" )
# generate audio samples for image datasets using text to speech synthesizer
if True: # Set true to enable generation of audio for each person in datasets folder
from libfaceid.speech_synthesizer import SpeechSynthesizerModels # lazy loading
speech_synthesizer = SpeechSynthesizerModels.TTSX3
#speech_synthesizer = SpeechSynthesizerModels.TACOTRON
#speech_synthesizer = SpeechSynthesizerModels.GOOGLECLOUD
train_audiosets(speech_synthesizer)
print( "Audio samples created!" )
def main(args):
if args.detector and args.encoder:
try:
detector = FaceDetectorModels(int(args.detector))
encoder = FaceEncoderModels(int(args.encoder))
classifier = FaceClassifierModels(int(args.classifier))
print( "Parameters: {} {} {}".format(detector, encoder, classifier) )
train_recognition(detector, encoder, classifier, True)
print( "\nImage dataset training completed!" )
# generate audio samples for image datasets using text to speech synthesizer
if args.set_speech_synthesizer:
from libfaceid.speech_synthesizer import SpeechSynthesizerModels # lazy loading
speech_synthesizer= SpeechSynthesizerModels(int(args.speech_synthesizer))
#print( "Parameters: {}".format(speech_synthesizer) )
train_audiosets(speech_synthesizer)
print( "Audio samples created!" )
except:
print( "Invalid parameter" )
return
run()
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--detector', required=False,
help='Detector model to use. Options: 0-HAARCASCADE, 1-DLIBHOG, 2-DLIBCNN, 3-SSDRESNET, 4-MTCNN, 5-FACENET')
parser.add_argument('--encoder', required=False,
help='Encoder model to use. Options: 0-LBPH, 1-OPENFACE, 2-DLIBRESNET, 3-FACENET')
parser.add_argument('--classifier', required=False, default=0,
help='Classifier algorithm to use. Options: 0-NAIVE_BAYES, 1-LINEAR_SVM, 2-RBF_SVM, 3-NEAREST_NEIGHBORS, 4-DECISION_TREE, 5-RANDOM_FOREST, 6-NEURAL_NET, 7-ADABOOST, 8-QDA.')
parser.add_argument('--set_speech_synthesizer', required=False, default=False,
help='Use text to speech synthesizier.')
parser.add_argument('--speech_synthesizer', required=False, default=0,
help='Speech synthesizier algorithm to use. Options: 0-TTSX3, 1-TACOTRON, 2-GOOGLECLOUD')
return parser.parse_args(argv)
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))