-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathparam_optimizer.py
executable file
·249 lines (218 loc) · 10.1 KB
/
param_optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from tqdm import tqdm
from copy import deepcopy
from scipy.optimize import minimize
from typing import Dict, Literal, List, Tuple
from pathlib import Path
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.exceptions import NotFittedError
import os
import regex
import sympy
import pickle
import argparse
import numpy as np
import pandas as pd
from evaluate import *
from odeformer.model.mixins import PredictionIntegrationMixin
from odeformer.baselines.baseline_utils import variance_weighted_r2_score
class ConstantOptimizer(PredictionIntegrationMixin):
def __init__(
self,
eq: str,
y0: np.ndarray,
time: np.ndarray,
observed_trajectory: np.ndarray,
init_random: bool,
optimization_objective: Literal["mse", "r2"] = "r2",
eval_objective: Literal["mse", "r2"] = "r2",
track_eval_history: bool = True,
):
"""
Parameters
----------
eq : str
equation with constants to be optimized
y0 : np.ndarray
initial value condition for ode integration
time : np.ndarray
evaluation times for ode integration
observed_trajectory : np.ndarray
We optimize the constants such that the integrated ODE becomes closer to this observed trajectory.
init_random : bool
If True, start optimization from random initial guesses. If False, start from constant values in `eq`.
optimization_objective : Literal["mse", "r2"]
Objective function to optimize.
eval_objective : Literal["mse", "r2"]
Objective function for evaluating the fit.
track_eval_history : bool
If True, the eval_objective is stored for each optimization step and the final parameter estimates are
taken to be those parameter values that achieved the best evaluation objective score.
"""
self.eq = eq
self.y0 = y0
self.time = time
self.observed_trajectory = observed_trajectory
self.init_random = init_random
self.optimization_objective = optimization_objective
self.eval_objective = eval_objective
self.track_eval_history = track_eval_history
self.CONSTANTS_PATTERN = r"(?:(?<!_\d*))(?:(?<!\*\*))(?:[-+]?)?(?:(?<=\()[-+]?)?(?:(?<=^)[-+]?)?(?:(?:\d*\.\d+)|(?:\d+\.?))(?:[Ee][+-]?\d+)?"
self.orig_params = self.get_params()
self.eval_history = []
def get_params(self) -> Dict[str, float]:
def replace_constant_by_param(match: regex.Match, param_prior: Dict[str, float]) -> str:
param_counter = len(param_prior)
param_prior[f"p_{param_counter}"] = float(match.group(0))
return f"p_{param_counter}"
param_priors = {}
_ = regex.sub(
pattern = self.CONSTANTS_PATTERN,
repl=lambda match: replace_constant_by_param(match, param_priors),
string=self.eq
)
return param_priors
def insert_params(self, params: np.ndarray) -> str:
params = deepcopy(params)
if isinstance(params, np.ndarray):
params = params.tolist()
assert isinstance(params, List), type(params)
return regex.sub(
pattern = self.CONSTANTS_PATTERN,
repl=lambda _: f"{params.pop(0)}", # do not remove lambda, this needs to be a Callable
string=self.eq
)
def set_params(self, params: np.ndarray) -> str:
self.eq = self.insert_params(params)
def simulate(self, params: Union[List, np.ndarray]) -> Tuple[np.ndarray, str]:
return self.integrate_prediction(
times=self.time,
y0=self.y0,
prediction=self.insert_params(params),
)
def objective(self, params: np.ndarray) -> float:
simulated_trajectory = self.simulate(params)
if self.track_eval_history:
self.eval_history.append([self._objective(simulated_trajectory, self.eval_objective), *params])
return self._objective(simulated_trajectory, self.optimization_objective)
def _objective(self, simulated_trajectory, objective: str):
if simulated_trajectory is None or not np.isfinite(simulated_trajectory).any():
return np.inf
try:
if objective == "r2":
return -1*variance_weighted_r2_score(self.observed_trajectory, simulated_trajectory)
elif objective == "mse":
return mean_squared_error(self.observed_trajectory, simulated_trajectory)
else:
raise ValueError(f"Unknown objective: {self.optimization_objective}")
except:
return np.inf
def optimize(self) -> Tuple[str, np.ndarray, np.ndarray]:
param_priors = list(self.get_params().values())
info = minimize(
fun=lambda _params: self.objective(_params),
x0=(np.random.randn(len(param_priors)) if self.init_random else param_priors),
)
if self.track_eval_history:
# take best params
optimal_params = self._get_optimal_params()
else:
# take final params
optimal_params = info["x"]
return self.insert_params(optimal_params), optimal_params, self.simulate(optimal_params)
def _get_optimal_params(self) -> np.ndarray:
if len(self.eval_history) == 0:
raise NotFittedError()
history = np.array(self.eval_history)
objective_history = history[:, 0]
param_history = history[:, 1:]
if np.all(~np.isfinite(objective_history)):
print("Warning: the entire objective history is non-finite.")
opt_idx = np.nanargmin(objective_history)
return param_history[opt_idx]
def main(args, result_dir, result_file):
if hasattr(args, "random_seed"):
print(f"Using random seed {args.random_seed}")
np.random.seed(args.random_seed)
pmlb_iterator = pd.read_pickle(args.path_dataset)
all_scores = pd.read_csv(args.path_scores, delimiter="\t")
final_scores = deepcopy(all_scores)
final_scores.loc[:, "optimize_params"] = True
final_preds, final_r2s = [], []
trajetory_counter = 0
for samples_i, (samples, _) in enumerate(tqdm(pmlb_iterator)):
times = samples["times"]
trajectories = samples["trajectory"]
assert isinstance(times, List), type(times)
assert isinstance(trajectories, List), type(trajectories)
for _trajectory_i, (_times, _trajectory) in enumerate(zip(times, trajectories)):
scores = all_scores.iloc[trajetory_counter]
pred_eq = " | ".join([str(sympy.parse_expr(e)) for e in scores.predicted_trees.split("|")])
param_optimizer = ConstantOptimizer(
eq=pred_eq,
y0=_trajectory[0],
time=_times,
observed_trajectory=_trajectory,
optimization_objective=args.optimization_objective,
eval_objective=args.eval_objective,
init_random=args.init_random,
track_eval_history=args.track_eval_history,
)
orig_params = list(param_optimizer.get_params().values())
orig_trajectory = param_optimizer.simulate(orig_params)
final_eq, estimated_params, simulated_trajectory = param_optimizer.optimize()
try:
r2 = variance_weighted_r2_score(_trajectory, simulated_trajectory)
except Exception as e:
print(e)
r2 = np.nan
try:
mse1 = mean_squared_error(simulated_trajectory, _trajectory)
except Exception as e:
print(e)
mse1 = np.nan
try:
mse2 = mean_squared_error(simulated_trajectory, _trajectory)
except Exception as e:
print(e)
mse2 = np.nan
final_r2s.append([scores.r2, r2, mse1, mse2])
print(final_r2s[-1])
final_preds.append(final_eq)
trajetory_counter += 1
final_scores.loc[:, "predicted_trees"] = final_preds
print(f"Saving optimized score at: {os.path.join(result_dir, result_file)}.")
final_scores.to_csv(os.path.join(result_dir, result_file))
print(f"final_scores: {final_scores}")
print(f"final_scores (min): {np.nanmin(np.array(final_r2s), axis=0)}")
print(f"final_scores (mean): {np.nanmean(np.array(final_r2s), axis=0)}")
print(f"final_scores (median): {np.nanmedian(np.array(final_r2s), axis=0)}")
return 0
def str2bool(arg):
if isinstance(arg, bool):
return arg
if arg.lower() == "true":
return True
elif arg.lower() == "false":
return False
else:
raise ValueError(f"Unknown argument {arg}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--path_scores", type=str, default="./experiments/odeformer/scores.csv")
parser.add_argument("--path_dataset", type=str, default="./datasets/strogatz.pkl")
parser.add_argument("--random_seed", type=int, default=2023)
parser.add_argument("--init_random", type=str2bool, default=False)
parser.add_argument("--optimization_objective", type=str, default="r2")
parser.add_argument("--eval_objective", type=str, default="r2")
parser.add_argument("--track_eval_history", type=str2bool, default=True)
args = parser.parse_args()
if args.init_random:
result_dir = Path(args.path_scores).parent / "optimize_init_random" / f"random_seed_{args.random_seed}"
else:
result_dir = Path(args.path_scores).parent / "optimize"
result_file = f"{str(Path(args.path_scores).stem)}_optimize.csv"
os.makedirs(result_dir, exist_ok=True)
with open(result_dir / result_file, "wb") as fout:
print(f"Saving args at {result_dir / result_file}")
pickle.dump(obj = dict(vars(args)), file=fout)
main(args, result_dir, result_file)