Object detection on an image
PYTHONPATH=. python keras_centernet/bin/ctdet_image.py --fn assets/demo.jpg --inres 512,512
Reproducing COCO AP scores
wget images.cocodataset.org/zips/val2017.zip
unzip val2017.zip && rm val2017.zip
wget images.cocodataset.org/annotations/annotations_trainval2017.zip
unzip annotations_trainval2017.zip && rm annotations_trainval2017.zip
PYTHONPATH=. python keras_centernet/bin/ctdet_coco.py --data val2017 --annotations annotations
Fixed resolution 384,384: 460s -> 92ms/image
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.363
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.544
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.390
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.152
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.391
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.556
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.308
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.479
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.497
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.265
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.538
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.712
Fixed resolution 512,512: 615s -> 123ms/image
PYTHONPATH=. python keras_centernet/bin/ctdet_coco.py --data val2017 --annotations annotations --inres 512,512 --no-full-resolution
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.392
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.576
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.424
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.203
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.418
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.556
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.324
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.513
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.535
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.325
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.570
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.716
# Reg fixed at 0.5
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.372
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.567
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.395
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.170
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.403
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.552
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.311
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.488
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.508
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.278
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.551
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.712
Full resolution, mode='testing'
: 764s -> 153ms/image
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.403
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.591
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.440
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.234
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.443
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.531
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.327
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.530
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.556
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.369
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.602
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.703
Pytorch (official repository), same as mode='testing'
: 380s -> 76ms/image
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.403
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.591
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.440
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.234
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.443
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.532
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.327
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.531
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.557
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.371
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.602
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.704