forked from weft/warp
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_spectrum.py
executable file
·198 lines (177 loc) · 5.76 KB
/
plot_spectrum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#! /usr/bin/env python
import sys
import os
import re
from matplotlib.colors import LogNorm
import matplotlib.gridspec as gridspec
import matplotlib.colorbar as cbar
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
# from MCNPtools.mctal import mctal
#from pyne import ace
import numpy as np
import numpy
plt.rc('text', usetex=True)
plt.rc('font', family='serif')
plt.rc('font', size=10)
#
# loading routines
#
def get_serpent_det(filepath):
fobj = open(filepath)
fstr = fobj.read()
names = re.findall('[a-zA-Z]+ *= *\[',fstr)
data = re.findall('\[ *\n[\w\s+-.]+\];',fstr)
alldata = dict()
dex = 0
for name in names:
varname = name.split()[0]
moredata = re.findall(' [ .+-eE0-9^\[]+\n',data[dex])
thisarray = numpy.array(moredata[0].split(),dtype=float)
for line in moredata[1:]:
thisarray=numpy.vstack((thisarray,numpy.array(line.split(),dtype=float)))
alldata[varname]=numpy.mat(thisarray)
dex = dex + 1
return alldata
def get_mcnp_mctal(filepath):
fobj = open(filepath)
fstr = fobj.read()
ene = re.findall('et +[0-9.E\+\- \n]+',fstr)
ene = ene[0].split()
ene = numpy.array(ene[2:],dtype=float)
vals = re.findall('vals *[0-9.E\+\- \n]+',fstr)
vals = vals[0].split()
vals = numpy.array(vals[1:],dtype=float)
errs = vals[1::2]
vals = vals[0::2]
alldata = numpy.array([ene,vals,errs])
return alldata
def get_warp_data(filepath):
fobj = open(filepath)
ene1 = []
ene2 = []
val = []
err = []
for line in fobj:
g=re.match(" *([0-9].[0-9E\+\-]+) +([0-9].[0-9E\+\-]+) +([0-9].[0-9E\+\-]+) +([0-9.INFinfE\+\-]+) +([0-9]+)",line)
if g:
ene1.append(float(g.group(1)))
ene2.append(float(g.group(2)))
val.append(float(g.group(3)))
err.append(float(g.group(4)))
else:
pass
#print line
ene = ene1
ene.append(ene2[-1])
alldata = [numpy.array(ene),numpy.array(val),numpy.array(err)]
return alldata
warpdata = get_warp_data( sys.argv[1]+'.tally')
serpdata = get_serpent_det(sys.argv[1]+'_det0.m')
mcnpdata = get_mcnp_mctal(sys.argv[1]+'.mctal')
tallybins = warpdata[0]
tally = warpdata[1]
warp_err = warpdata[2]
mcnp_vol = 5.1*5.1*5.1*numpy.pi*4.0/3.0
if sys.argv[1] == 'godiva':
err_range = 0.02
mcnp_vol = 555.647209455
if sys.argv[1] == 'homfuel' or sys.argv[1]=='test':
err_range_mcnp = 0.005
err_range_serp = 0.005
xlims=[1e-6,20]
mcnp_vol = 50.0*100.0*100.0#60*60*60
if sys.argv[1] == 'pincell':
err_range_mcnp = 0.05
err_range_serp = 0.025
xlims=[1e-8,20]
mcnp_vol = 40.0*2.*2.*numpy.pi
if sys.argv[1] == 'assembly':
err_range = 0.2
mcnp_vol = 125.663706144
if sys.argv[1] == 'test':
err_range = 0.1
mcnp_vol = 30*30*30.0
if sys.argv[1] == 'jezebel':
err_range_mcnp = 0.01
err_range_serp = 0.01
xlims=[1e-3,20]
mcnp_vol = 6.6595*6.6595*6.6595*numpy.pi*4.0/3.0
if sys.argv[1] == 'flibe':
err_range_mcnp = 0.0025
err_range_serp = 0.016
xlims=[1e-5,20]
mcnp_vol = 5.0*5.0*5.0*numpy.pi*4.0/3.0
if sys.argv[1] == 'assembly-lw':
err_range_mcnp = 0.1
err_range_serp = 0.1
xlims=[1e-8,20]
mcnp_vol = 40.0*1.0*1.0*numpy.pi
if sys.argv[1] == 'sodiumpin':
err_range_mcnp = 0.01
err_range_serp = 0.01
xlims=[1e-4,20]
mcnp_vol = 40.0*1.0*1.0*numpy.pi
widths=numpy.diff(tallybins)
avg=(tallybins[:-1]+tallybins[1:])/2
print tallybins[0],tallybins[-1],len(tallybins)
newflux=tally
newflux=numpy.divide(newflux,widths*mcnp_vol)
newflux=numpy.multiply(newflux,avg)
serpE1=numpy.array(serpdata['DETfluxlogE'][:,0])
serpE2=numpy.array(serpdata['DETfluxlogE'][:,1])
serpErr=numpy.array(serpdata['DETfluxlog'][:,11])
serpF=numpy.array(serpdata['DETfluxlog'][:,10])
serpE1 = numpy.squeeze(numpy.asarray(serpE1))
serpE2 = numpy.squeeze(numpy.asarray(serpE2))
serpErr = numpy.squeeze(numpy.asarray(serpErr))
serpF = numpy.squeeze(numpy.asarray(serpF))/mcnp_vol
serp_E = numpy.hstack((serpE1,serpE2[-1]))
serp_widths=numpy.diff(serp_E)
serp_avg=(serp_E[:-1]+serp_E[1:])/2
serp_flux=numpy.divide(serpF,serp_widths)
serp_flux=numpy.multiply(serp_flux,serp_avg)
mcnp_bins = mcnpdata[0]
mcnp_widths=numpy.diff(mcnp_bins);
mcnp_avg=(mcnp_bins[:-1]+mcnp_bins[1:])/2;
mcnp_newflux= mcnpdata[1][1:-1]
mcnp_err = mcnpdata[2][1:-1]
mcnp_newflux=numpy.divide(mcnp_newflux,mcnp_widths)
mcnp_newflux=numpy.multiply(mcnp_newflux,mcnp_avg)
fig = plt.figure(figsize=(10,6))
gs = gridspec.GridSpec(3, 1, height_ratios=[6, 1, 1])
ax0 = plt.subplot(gs[0])
ax1 = plt.subplot(gs[1])
ax2 = plt.subplot(gs[2])
#gs = gridspec.GridSpec(2, 1, height_ratios=[6, 1])
#ax0 = plt.subplot(gs[0])
#ax2 = plt.subplot(gs[1])
ax0.semilogx(mcnp_avg,mcnp_newflux,'k',linestyle='steps-mid',label='MCNP 6.1')
ax0.semilogx(serp_avg,serpF,'b',linestyle='steps-mid',label='Serpent 2.1.18')
ax0.semilogx(avg,newflux,'r',linestyle='steps-mid',label='WARP')
#ax0.set_xlabel('Energy (MeV)')
ax0.set_ylabel(r'Flux/Lethargy per Fission Neutron')
#ax0.set_title(title)
handles, labels = ax0.get_legend_handles_labels()
ax0.legend(handles,labels,loc=2)
ax0.set_xlim(xlims)
ax0.grid(True)
ax1.semilogx(mcnp_avg,numpy.divide(newflux-mcnp_newflux,mcnp_newflux),'b',linestyle='steps-mid',label='Flux Relative Error vs. MCNP')
ax1.set_xlim(xlims)
ax1.set_ylim([-err_range_mcnp,err_range_mcnp])
ax1.fill_between(mcnp_avg,-2.0*mcnp_err,2.0*mcnp_err,color='black',facecolor='green', alpha=0.5)
ax1.set_xscale('log')
ax1.yaxis.set_major_locator(MaxNLocator(4))
#ax1.set_xlabel('Energy (MeV)')
ax1.set_ylabel('Rel. Err. \n vs. MCNP')
ax1.grid(True)
ax2.semilogx(serp_avg,numpy.divide(newflux-serpF,serpF),'b',linestyle='steps-mid',label='Flux Relative Error vs. Serpent')
ax2.set_xlim(xlims)
ax2.set_ylim([-err_range_serp,err_range_serp])
ax2.fill_between(serp_avg,-2.0*serpErr,2.0*serpErr,color='black',facecolor='green', alpha=0.5)
ax2.set_xscale('log')
ax2.yaxis.set_major_locator(MaxNLocator(4))
ax2.set_xlabel('Energy (MeV)')
ax2.set_ylabel('Rel. Err. \n vs. Serpent')
ax2.grid(True)
plt.show()