
Semaphore Security Audit
By Kev Zettler, Security Engineer @ EF’s Privacy & Scaling Explorations Team

October 2022

Table of Contents

1. Overview
a. Executive Summary
b. Background
c. Coverage
d. Techniques Used
e. General Analysis

2. Findings
a. i. Finding 1 - [M1]

Overview

Executive Summary
This audit reviews Semaphore version 2.5.0 as a follow up audit to a previous audit of
semaphore 2.0.0. This audit looks at the modifications and additions to the Semaphore
codebase between those versions. This audit did not review the circom circuits as they have not
changed since the previous audit. The new major changes that this audit reviews are
modifications to the Semaphore smart contracts, changes to the dependencies in zk-kit, and the
new Semaphore Javascript NPM modules.

Background
Semaphore is a set of tools and contracts that enable developers to add anonymous voting or
whistleblowing features to their dapps. The latest version of Semaphore provides both solidity
and JavaScript libraries for developers to consume.

Coverage
Github Repo: https://github.com/semaphore-protocol/semaphore
Commit Hash: 68779e90a0db120d9c36143c5f48ca6fd1a2a159
Release Tag: v2.5.0
Documentation: https://semaphore.appliedzkp.org/

The audit covers all contracts in semaphore/contracts, ZK-kit IncrementalBinaryTree and
SparseMerkleTree data structures, Javascript Group, Identity, and Proof modules The following
were focused on during the review of the smart contracts (but not limited to):

● Proper access control for handling group settings and membership
● Identity revealing information kept off-chain and private when proving membership
● Inability to successfully cast a vote or whistleblow when a proof is invalid
● Nullifier hashes were properly set when required
● Values were within range of the snark field when required
● Malicious members cannot compromise the privacy of others or halt the protocol

Techniques Used
The following techniques were used in this audit. Manual review was used across the
Semaphore contracts, ZK-Kit dependencies, and Javascript modules. Static Analysis via Slither
and Mythril was used on the Semaphore contracts.

https://semaphore.appliedzkp.org/

Static Analysis - Mythril

Mythril is a static analysis tool from ConsenSys. Mythril compiles and runs against contract
bytecode. Mythril reported no issues with the Semaphore contracts.
$ myth analyze ./contracts/Semaphore.sol --solc-json ./myth-standard-solc.json
The analysis was completed successfully. No issues were detected.

Static Analysis - Slither

Slither is a static analysis tool from TrailOfBits. Slither was failing to parse some of the
Semaphore code. Some of the Semaphore code had to be modified to complete a slither scan.
Slither struggles to parse shared library classes. IncrementalBinaryTree.sol was modified to
move the struct within the library and then had to patch SemaphoreGroups.sol to update the
references to IncrementalBinaryTree.IncrementalTreeData. The verifier contracts are modified
to include a contract local error class for InvalidProof. These slither issues have been reported
at:

https://github.com/crytic/slither/issues/1393
https://github.com/crytic/slither/issues/1379

Slither reported many results. These results were inspected further for anything high, or critical
but no results were found. Full slither results available at:

https://gist.github.com/kevzettler/6e8e9174aabfa0ea271c81381e5f6b2f

General Analysis

Category Evaluation

Access Control Strong. Access is limited as intended, mainly to group admins.

Launch Risk Strong. Semaphore does not manage assets. Additionally many
dApps built on Semaphore will deploy their own Semaphore
contract. They should consider launch controls if necessary.

Code Quality Strong. Code follows best practices for solidity and circom. No
unnecessary use of assembly. No confusing variable/function

https://github.com/crytic/slither/issues/1393
https://github.com/crytic/slither/issues/1379

names. Good use of interfaces and inheritance.

Events Strong. Events are emitted after every important function call
such as casting votes and adding members. Relevant details are
emitted.

Dummy Proof Strong. Contract function names are clear in their intent and hard
to misuse.

Complexity Strong. Short and simple contracts and circuits

Testing Strong. Contracts and Javascript modules have good test
coverage.

Documentation Strong. NatSpec comments for all functions and good
documentation on the website.

Cryptography Not Reviewed

ZK Circuits Not Reviewed

Findings

The audit found no severe issues during manual review. The audit found varying severity issues
during the slither audit that upon manual review were deemed false positives or low severity.

Major

[M1] IncrementalBinaryMerkleTree.sol: Update can change
uninitialized leaves in the tree.

https://github.com/privacy-scaling-explorations/zk-kit/issues/32

During the audit an issue was filed against the zk-kit repo pointing out an
error in the IncrementalBinaryMerkleTree.sol contract

IncrementalBinaryMerkleTree.sol: Update can change uninitialized
leaves in the tree.

Describe the bug It is possible to use the update function to change a zero leaf at an index that hasn't
been inserted into the tree yet.

https://github.com/privacy-scaling-explorations/zk-kit/issues/32

For example, suppose that 4 leaves are inserted into the tree. We can update leaf 7 by proving
inclusion of the zero value at leaf 7, because technically the tree is never "empty", but it begins
completely filled with zero values.

Updating an uninitialized index can cause the tree root to no longer represent the set of leaves
accurately, because the lastSubtrees array will be incorrect at some point when updating the root.

Fix Log

Issue Severity Status

[M1] Major Fixed
https://github.com/privacy-scaling-explorations/zk-kit/issu
es/32

Vulnerability Classifications

Severity Categories

Severity Description

Recommendation Information not relevant to security, but may be helpful for efficiency,
costs, etc.

Warning The issue does not pose an immediate security threat, but may be a lack
of following best practices or more easily lead to the future introductions
of bugs.

Minor The code does not work as intended. Impact to the system and users is
minimal if present at all.

Major The issue can lead to moderate financial, reputation, availability, or
privacy damage. Or the issue can lead to substantial damage under
extreme and unlikely circumstances.

Critical The issue can lead to substantial financial, reputation, availability, or
privacy damage.

