-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathinference.py
54 lines (45 loc) · 3.19 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from HYPERLIPS import Hyperlips
import argparse
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '1'
parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using HyperLipsBase or HyperLipsHR models')
parser.add_argument('--checkpoint_path_BASE', type=str,help='Name of saved HyperLipsBase checkpoint to load weights from', default="checkpoints/hyperlipsbase_multi.pth")
parser.add_argument('--checkpoint_path_HR', type=str,help='Name of saved HyperLipsHR checkpoint to load weights from', default=None)#"checkpoints/hyperlipshr_mead_128.pth"
parser.add_argument('--face', type=str,
help='Filepath of video/image that contains faces to use', default="test/video5/video5.mp4")
parser.add_argument('--audio', type=str,
help='Filepath of video/audio file to use as raw audio source', default="test/video5/video5.wav")
parser.add_argument('--outfile', type=str, help='Video path to save result. See default for an e.g.',
default='result/result_video.mp4')
parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0],
help='Padding (top, bottom, left, right). Please adjust to include chin at least')
parser.add_argument('--filter_window', default=None, type=int,
help='real window is 2*T+1')
parser.add_argument('--hyper_batch_size', type=int, help='Batch size for hyperlips model(s)', default=128)
parser.add_argument('--resize_factor', default=1, type=int,
help='Reduce the resolution by this factor. Sometimes, best results are obtained at 480p or 720p')
parser.add_argument('--img_size', default=128, type=int)
parser.add_argument('--segmentation_path', type=str,
help='Name of saved checkpoint of segmentation network', default="checkpoints/face_segmentation.pth")
parser.add_argument('--face_enhancement_path', type=str,
help='Name of saved checkpoint of segmentation network', default="checkpoints/GFPGANv1.3.pth")#"checkpoints/GFPGANv1.3.pth"
parser.add_argument('--no_faceenhance', default=False, action='store_true',
help='Prevent using face enhancement')
parser.add_argument('--gpu_id', type=float, help='gpu id (default: 0)',
default=0, required=False)
args = parser.parse_args()
def inference_single():
Hyperlips_executor = Hyperlips(checkpoint_path_BASE=args.checkpoint_path_BASE,
checkpoint_path_HR=args.checkpoint_path_HR,
segmentation_path=args.segmentation_path,
face_enhancement_path = args.face_enhancement_path,
gpu_id = args.gpu_id,
window =args.filter_window,
hyper_batch_size=args.hyper_batch_size,
img_size = args.img_size,
resize_factor = args.resize_factor,
pad = args.pads)
Hyperlips_executor._HyperlipsLoadModels()
Hyperlips_executor._HyperlipsInference(args.face,args.audio,args.outfile)
if __name__ == '__main__':
inference_single()