-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain.py
188 lines (148 loc) · 6.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import argparse
from utils import read_pickle, Datagen_set, Datagen_deepcom, Datagen_tree, Datagen_binary, bleu4
from models import Seq2seqModel, CodennModel, ChildsumModel, MultiwayModel, NaryModel
import numpy as np
import os
import tensorflow as tf
from tqdm import tqdm
from joblib import delayed, Parallel
import json
# parse argments
parser = argparse.ArgumentParser(description='Source Code Generation')
parser.add_argument('-m', "--method", type=str, nargs="?", required=True,
choices=['seq2seq', 'deepcom', 'codenn', 'childsum', 'multiway', "nary"],
help='Encoder method')
parser.add_argument('-d', "--dim", type=int, nargs="?", required=False, default=512,
help='Representation dimension')
parser.add_argument("--embed", type=int, nargs="?", required=False, default=256,
help='Representation dimension')
parser.add_argument("--drop", type=float, nargs="?", required=False, default=.5,
help="Dropout rate")
parser.add_argument('-r', "--lr", type=float, nargs="?", required=True,
help='Learning rate')
parser.add_argument('-b', "--batch", type=int, nargs="?", required=True,
help='Mini batch size')
parser.add_argument('-e', "--epochs", type=int, nargs="?", required=True,
help='Epoch number')
parser.add_argument('-g', "--gpu", type=str, nargs="?", required=True,
help='What GPU to use')
parser.add_argument('-l', "--layer", type=int, nargs="?", required=False, default=1,
help='Number of layers')
parser.add_argument("--val", type=str, nargs="?", required=False, default="BLEU",
help='Validation method')
args = parser.parse_args()
name = args.method + "_dim" + str(args.dim) + "_embed" + str(args.embed)
name = name + "_drop" + str(args.drop)
name = name + "_lr" + str(args.lr) + "_batch" + str(args.batch)
name = name + "_epochs" + str(args.epochs) + "_layer" + str(args.layer) + "NEW_skip_size100"
checkpoint_dir = "./models/" + name
# set tf eager
tfe = tf.contrib.eager
config = tf.ConfigProto(
gpu_options=tf.GPUOptions(
visible_device_list=args.gpu))
# config.gpu_options.allow_growth = True
session = tf.Session(config=config)
tf.enable_eager_execution(config=config)
os.makedirs("./logs/" + name, exist_ok=True)
writer = tf.contrib.summary.create_file_writer("./logs/" + name, flush_millis=10000)
# load data
trn_data = read_pickle("dataset/nl/train.pkl")
vld_data = read_pickle("dataset/nl/valid.pkl")
tst_data = read_pickle("dataset/nl/test.pkl")
code_i2w = read_pickle("dataset/code_i2w.pkl")
code_w2i = read_pickle("dataset/code_w2i.pkl")
nl_i2w = read_pickle("dataset/nl_i2w.pkl")
nl_w2i = read_pickle("dataset/nl_w2i.pkl")
trn_x, trn_y_raw = zip(*sorted(trn_data.items()))
vld_x, vld_y_raw = zip(*sorted(vld_data.items()))
tst_x, tst_y_raw = zip(*sorted(tst_data.items()))
trn_y = [[nl_w2i[t] if t in nl_w2i.keys() else nl_w2i["<UNK>"] for t in l] for l in trn_y_raw]
vld_y = [[nl_w2i[t] if t in nl_w2i.keys() else nl_w2i["<UNK>"] for t in l] for l in vld_y_raw]
tst_y = [[nl_w2i[t] if t in nl_w2i.keys() else nl_w2i["<UNK>"] for t in l] for l in tst_y_raw]
# setting model
if args.method in ['seq2seq', 'deepcom']:
Model = Seq2seqModel
elif args.method in ['codenn']:
Model = CodennModel
elif args.method in ['childsum']:
Model = ChildsumModel
elif args.method in ['multiway']:
Model = MultiwayModel
elif args.method in ['nary']:
Model = NaryModel
model = Model(args.dim, args.dim, args.dim, len(code_w2i), len(nl_w2i),
dropout=args.drop, lr=args.lr, layer=args.layer)
epochs = args.epochs
batch_size = args.batch
os.makedirs(checkpoint_dir, exist_ok=True)
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
root = tfe.Checkpoint(model=model)
history = {"loss": [], "loss_val": [], "bleu_val": []}
# Setting Data Generator
if args.method in ['deepcom']:
Datagen = Datagen_deepcom
elif args.method in ['codenn']:
Datagen = Datagen_set
elif args.method in ['childsum', 'multiway']:
Datagen = Datagen_tree
elif args.method in ['nary']:
Datagen = Datagen_binary
trn_gen = Datagen(trn_x, trn_y, batch_size, code_w2i, nl_i2w, train=True)
vld_gen = Datagen(vld_x, vld_y, batch_size, code_w2i, nl_i2w, train=False)
tst_gen = Datagen(tst_x, tst_y, batch_size, code_w2i, nl_i2w, train=False)
# training
with writer.as_default(), tf.contrib.summary.always_record_summaries():
for epoch in range(1, epochs + 1):
# train
loss_tmp = []
t = tqdm(trn_gen(0))
for x, y, _, _ in t:
loss_tmp.append(model.train_on_batch(x, y))
t.set_description("epoch:{:03d}, loss = {}".format(epoch, np.mean(loss_tmp)))
history["loss"].append(np.sum(loss_tmp) / len(t))
tf.contrib.summary.scalar("loss", np.sum(loss_tmp) / len(t), step=epoch)
# validate loss
loss_tmp = []
t = tqdm(vld_gen(0))
for x, y, _, _ in t:
loss_tmp.append(model.evaluate_on_batch(x, y))
t.set_description("epoch:{:03d}, loss_val = {}".format(epoch, np.mean(loss_tmp)))
history["loss_val"].append(np.sum(loss_tmp) / len(t))
tf.contrib.summary.scalar("loss_val", np.sum(loss_tmp) / len(t), step=epoch)
# validate bleu
preds = []
trues = []
bleus = []
t = tqdm(vld_gen(0))
for x, y, _, y_raw in t:
res = model.translate(x, nl_i2w, nl_w2i)
preds += res
trues += [s[1:-1] for s in y_raw]
bleus += [bleu4(tt, p) for tt, p in zip(trues, preds)]
t.set_description("epoch:{:03d}, bleu_val = {}".format(epoch, np.mean(bleus)))
history["bleu_val"].append(np.mean(bleus))
tf.contrib.summary.scalar("bleu_val", np.mean(bleus), step=epoch)
# checkpoint
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
hoge = root.save(file_prefix=checkpoint_prefix)
if history["bleu_val"][-1] == max(history["bleu_val"]):
best_model = hoge
print("Now best model is {}".format(best_model))
# load final weight
print("Restore {}".format(best_model))
root.restore(best_model)
# evaluation
preds = []
trues = []
for x, y, _, y_raw in tqdm(tst_gen(0), "Testing"):
res = model.translate(x, nl_i2w, nl_w2i)
preds += res
trues += [s[1:-1] for s in y_raw]
bleus = Parallel(n_jobs=-1)(delayed(bleu4)(t, p) for t, p in (list(zip(trues, preds))))
history["bleus"] = bleus
history["preds"] = preds
history["trues"] = trues
history["numbers"] = [int(x.split("/")[-1]) for x in tst_x]
with open(os.path.join(checkpoint_dir, "history.json"), "w") as f:
json.dump(history, f)