Skip to content

SHAMIK-97/valeo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Physically Feasible Semantic Segmentation

Abstract: State-of-the-art semantic segmentation models are typically optimized in a data-driven fashion, minimizing solely per-pixel classification objectives on their training data. This purely data-driven paradigm often leads to absurd segmentations, especially when the domain of input images is shifted from the one encountered during training. For instance, state-of-the-art models may assign the label road'' to a segment which is located above a segment that is respectively labeled as sky'', although our knowledge of the physical world dictates that such a configuration is not feasible for images captured by forward-facing upright cameras. Our method, Physically Feasible Semantic Segmentation (PhyFea), extracts explicit physical constraints that govern spatial class relations from the training sets of semantic segmentation datasets and enforces a differentiable loss function that penalizes violations of these constraints to promote prediction feasibility. PhyFea yields significant performance improvements in mIoU over each state-of-the-art network we use as baseline across ADE20K, Cityscapes and ACDC, notably a $1.5%$ improvement on ADE20K and a $2.1%$ improvement on ACDC

Installation : Follow the steps here https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/get_started.md#installation

About

Valeo challange

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages