-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdata.py
264 lines (213 loc) · 9.12 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
from torchvision.datasets import CIFAR100
from torch.utils.data import DataLoader
from torchvision.transforms import Compose, transforms
from PIL import Image
import os
import os.path
import numpy as np
import sys
import pickle
import torch
import torch.utils.data as data
from itertools import permutations
def set_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
class VisionDataset(data.Dataset):
_repr_indent = 4
def __init__(self, root, transforms=None, transform=None, target_transform=None):
if isinstance(root, torch._six.string_classes):
root = os.path.expanduser(root)
self.root = root
has_transforms = transforms is not None
has_separate_transform = transform is not None or target_transform is not None
if has_transforms and has_separate_transform:
raise ValueError("Only transforms or transform/target_transform can "
"be passed as argument")
# for backwards-compatibility
self.transform = transform
self.target_transform = target_transform
if has_separate_transform:
transforms = StandardTransform(transform, target_transform)
self.transforms = transforms
def __getitem__(self, index):
raise NotImplementedError
def __len__(self):
raise NotImplementedError
def __repr__(self):
head = "Dataset " + self.__class__.__name__
body = ["Number of datapoints: {}".format(self.__len__())]
if self.root is not None:
body.append("Root location: {}".format(self.root))
body += self.extra_repr().splitlines()
if self.transforms is not None:
body += [repr(self.transforms)]
lines = [head] + [" " * self._repr_indent + line for line in body]
return '\n'.join(lines)
def _format_transform_repr(self, transform, head):
lines = transform.__repr__().splitlines()
return (["{}{}".format(head, lines[0])] +
["{}{}".format(" " * len(head), line) for line in lines[1:]])
def extra_repr(self):
return ""
class CIFAR10(VisionDataset):
base_folder = 'cifar-10-batches-py'
url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
filename = "cifar-10-python.tar.gz"
tgz_md5 = 'c58f30108f718f92721af3b95e74349a'
train_list = [
['data_batch_1', 'c99cafc152244af753f735de768cd75f'],
['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'],
['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'],
['data_batch_4', '634d18415352ddfa80567beed471001a'],
['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'],
]
test_list = [
['test_batch', '40351d587109b95175f43aff81a1287e'],
]
meta = {
'filename': 'batches.meta',
'key': 'label_names',
'md5': '5ff9c542aee3614f3951f8cda6e48888',
}
def __init__(self, root, train=True,
transform=None, download=False, transform_list=None):
super(CIFAR10, self).__init__(root)
self.transform = transform
self.transform_list = transform_list
self.train = train # training set or test set
if download:
raise ValueError('cannot download.')
exit()
#self.download()
#if not self._check_integrity():
# raise RuntimeError('Dataset not found or corrupted.' +
# ' You can use download=True to download it')
if self.train:
downloaded_list = self.train_list
else:
downloaded_list = self.test_list
self.data = []
self.targets = []
# now load the picked numpy arrays
for file_name, checksum in downloaded_list:
file_path = os.path.join(self.root, self.base_folder, file_name)
with open(file_path, 'rb') as f:
if sys.version_info[0] == 2:
entry = pickle.load(f)
else:
entry = pickle.load(f, encoding='latin1')
self.data.append(entry['data'])
if 'labels' in entry:
self.targets.extend(entry['labels'])
else:
self.targets.extend(entry['fine_labels'])
self.data = np.vstack(self.data).reshape(-1, 3, 32, 32)
self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
self._load_meta()
def _load_meta(self):
path = os.path.join(self.root, self.base_folder, self.meta['filename'])
#if not check_integrity(path, self.meta['md5']):
# raise RuntimeError('Dataset metadata file not found or corrupted.' +
# ' You can use download=True to download it')
with open(path, 'rb') as infile:
if sys.version_info[0] == 2:
data = pickle.load(infile)
else:
data = pickle.load(infile, encoding='latin1')
self.classes = data[self.meta['key']]
self.class_to_idx = {_class: i for i, _class in enumerate(self.classes)}
def __getitem__(self, index):
img, target = self.data[index], self.targets[index]
# while training, we need different transform function
if self.transform_list is not None:
img_transformed = []
for transform in self.transform_list:
img_transformed.append(transform(Image.fromarray(img.copy())))
img = torch.stack(img_transformed)
else:
img = self.transform(Image.fromarray(img))
return img, target
def __len__(self):
return len(self.data)
def _check_integrity(self):
root = self.root
for fentry in (self.train_list + self.test_list):
filename, md5 = fentry[0], fentry[1]
fpath = os.path.join(root, self.base_folder, filename)
if not check_integrity(fpath, md5):
return False
return True
def download(self):
import tarfile
if self._check_integrity():
print('Files already downloaded and verified')
return
download_url(self.url, self.root, self.filename, self.tgz_md5)
# extract file
with tarfile.open(os.path.join(self.root, self.filename), "r:gz") as tar:
tar.extractall(path=self.root)
def extra_repr(self):
return "Split: {}".format("Train" if self.train is True else "Test")
class CIFAR100(CIFAR10):
"""`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
This is a subclass of the `CIFAR10` Dataset.
"""
base_folder = 'cifar-100-python'
url = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz"
filename = "cifar-100-python.tar.gz"
tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85'
train_list = [
['train', '16019d7e3df5f24257cddd939b257f8d'],
]
test_list = [
['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'],
]
meta = {
'filename': 'meta',
'key': 'fine_label_names',
'md5': '7973b15100ade9c7d40fb424638fde48',
}
def get_dataloader(args):
train_transforms = []
for i in range(len(args.model_names)):
set_seed(i)
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
])
train_transforms.append(train_transform)
trainset = CIFAR100(root=args.root, train=True, transform_list=train_transforms, download=False)
train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers)
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
])
valset = CIFAR100(root=args.root, train=False, transform=test_transform, download=False)
val_loader = DataLoader(valset, batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers)
return train_loader, val_loader
if __name__ == '__main__':
import argparse
import cv2
parser = argparse.ArgumentParser()
parser.add_argument('--root', type=str, default='dataset')
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--num_workers', type=int, default=1)
parser.add_argument('--model_names', type=str, nargs='+', default=['resnet56', 'resnet32'])
args = parser.parse_args()
train_loader, val_loader = get_dataloader(args)
for img, label in train_loader:
# print(img.shape, label.shape) # torch.Size([64, 2, 3, 32, 32]) torch.Size([64])
# print(img[0, 0] == img[0, 1])
# cv2.imshow("1", cv2.resize(img.numpy()[0,0].transpose(1, 2, 0), (200, 200)))
# cv2.imshow("2", cv2.resize(img.numpy()[0,1].transpose(1, 2, 0), (200, 200)))
break
for img, label in val_loader:
print(img.shape, label.shape) # torch.Size([64, 3, 32, 32]) torch.Size([64])
cv2.imshow("1", cv2.resize(img.numpy()[0].transpose(1, 2, 0), (200, 200)))
break
cv2.waitKey(0)