-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCAM_student_no_distillation_train.py
178 lines (133 loc) · 6.19 KB
/
CAM_student_no_distillation_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# 为了做学生的CAM图,需要对学生的多粒度做训练,此代码是不经过蒸馏的训练。蒸馏的学生训练直接参考student.py即可
import os
import os.path as osp
import argparse
import time
import numpy as np
from datetime import datetime
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import ReduceLROnPlateau, MultiStepLR
from data.cifar100 import get_cifar100_dataloaders, get_cifar100_dataloaders_sample
from itertools import chain
from tensorboardX import SummaryWriter
from utils import AverageMeter, accuracy, student_eval_with_target
from wrapper import wrapper
from models import model_dict
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser = argparse.ArgumentParser(description='CAM no distillation MAG student')
parser.add_argument('--root', type=str, default='/data/wyx/datasets/cifar100')
parser.add_argument('--num_class', type=int, default=100)
parser.add_argument('--encoder', type=int, nargs='+', default=[64, 256])
parser.add_argument('--epoch', type=int, default=240)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--lr', type=float, default=0.05)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight-decay', type=float, default=5e-4)
parser.add_argument('--gamma', type=float, default=0.1)
parser.add_argument('--milestones', type=int, nargs='+', default=[150, 180, 210])
parser.add_argument('--s-arch', type=str) # student architecture
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--gpu-id', type=int, default=0)
parser.add_argument('--print_freq', type=int, default=100)
args = parser.parse_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_id)
if args.s_arch in ['MobileNetV2', 'ShuffleV1', 'ShuffleV2']:
args.lr = 0.01
exp_name = f'CAM/nodistill_mag_S_{args.s_arch}'
exp_path = './experiments/{}'.format(exp_name)
os.makedirs(exp_path, exist_ok=True)
print(f"CAM no distillation MAG Student:{args.s_arch} [{exp_path}]")
logger = SummaryWriter(osp.join(exp_path, 'events'), flush_secs=10)
train_loader, val_loader, n_data = get_cifar100_dataloaders(root=args.root, batch_size=args.batch_size, num_workers=4, is_instance=True)
args.n_data = n_data
# student model definition
s_model = model_dict[args.s_arch](num_classes=100)
s_model = wrapper(module=s_model, cfg=args).cuda()
# ---------------- start distillation ! -------------------
print("-------------start distillation ! -------------")
# construct kd loss and optimizer
s_optimizer = optim.SGD(
chain(s_model.parameters()),
lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
s_scheduler = MultiStepLR(s_optimizer, args.milestones, args.gamma)
best_acc = -1
best_ak_acc = -1
best_dk_acc = -1
for epoch in range(args.epoch):
s_model.train()
s_ak_loss_record = AverageMeter()
s_dk_loss_record = AverageMeter()
s_logits_loss_record = AverageMeter()
s_acc_record = AverageMeter()
start = time.time()
for data in train_loader:
img, target, index = data
img = img.float().cuda()
target = target.cuda()
index = index.cuda()
s_optimizer.zero_grad()
s_out, s_ak_decoder_out, s_dk_decoder_out, (feat_s, feat_ss) = s_model.forward(
img, bb_grad=True, output_decoder=True, output_encoder=False)
# cls loss
loss_cls = F.cross_entropy(s_out, target)
dk_decoder_loss = F.cross_entropy(s_dk_decoder_out, target)
ak_decoder_loss = F.cross_entropy(s_ak_decoder_out, target)
loss = loss_cls + dk_decoder_loss + ak_decoder_loss
loss.backward()
s_optimizer.step()
s_ak_loss_record.update(dk_decoder_loss.item(), img.size(0))
s_dk_loss_record.update(ak_decoder_loss.item(), img.size(0))
s_logits_loss_record.update(loss_cls.item(), img.size(0))
acc = accuracy(s_out.data, target)[0]
s_acc_record.update(acc.item(), img.size(0))
logger.add_scalar('s_train/s_ak_loss', s_ak_loss_record.avg, epoch + 1)
logger.add_scalar('s_train/s_dk_loss', s_dk_loss_record.avg, epoch + 1)
logger.add_scalar('s_train/s_logits_loss', s_logits_loss_record.avg, epoch + 1)
logger.add_scalar('s_train/s_acc', s_acc_record.avg, epoch + 1)
run_time = time.time() - start
msg = 'student train Epoch:{:03d}/{:03d}\truntime:{:.3f}\t hp loss:{:.3f} lp loss:{:.3f} acc:{:.2f} '.format(
epoch + 1, args.epoch, run_time, s_ak_loss_record.avg,
s_dk_loss_record.avg, s_acc_record.avg
)
if (epoch + 1) % args.print_freq == 0:
print(msg)
# validation
start = time.time()
s_nk_acc_record, s_ak_acc_record, s_dk_acc_record = student_eval_with_target(s_model, val_loader, args)
logger.add_scalar('s_val/s_ak_acc', s_ak_acc_record.avg, epoch + 1)
logger.add_scalar('s_val/s_dk_acc', s_dk_acc_record.avg, epoch + 1)
logger.add_scalar('s_val/s_logits_acc', s_nk_acc_record.avg, epoch + 1)
run_time = time.time() - start
msg = 'student val Epoch:{:03d}/{:03d}\truntime:{:.3f}\t ak_acc:{:.2f} nk_acc:{:.2f} dk_acc:{:.2f}'.format(
epoch + 1, args.epoch, run_time, s_ak_acc_record.avg,
s_nk_acc_record.avg, s_dk_acc_record.avg
)
if (epoch + 1) % args.print_freq == 0:
print(msg)
if s_nk_acc_record.avg > best_acc:
state_dict = dict(epoch=epoch + 1, state_dict=s_model.state_dict(), acc=s_nk_acc_record.avg)
name = osp.join(exp_path, 'ckpt/best.pth')
os.makedirs(osp.dirname(name), exist_ok=True)
torch.save(state_dict, name)
best_acc = s_nk_acc_record.avg
best_ak_acc = s_ak_acc_record.avg
best_dk_acc = s_dk_acc_record.avg
s_scheduler.step()
print('student_best_acc: {:.2f} best_ak_acc:{:.2f} best_dk_acc:{:.2f}'.format(best_acc, best_ak_acc, best_dk_acc))
print()