-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathscrape_openreview_from_csv.py
198 lines (164 loc) · 8.29 KB
/
scrape_openreview_from_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import time
import os
from collections import defaultdict
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from bs4 import BeautifulSoup
from selenium import webdriver
from tqdm import tqdm
# Author object
class Author:
def __init__(self, name, affil):
self.name = name
self.affil = affil
self.num_total = 0
self.num_accept = 0
self.num_reject = 0
self.scores = []
self.scores_accept = []
self.first_author = 0
self.last_author = 0
def update(self, authors_list, score, is_accepted):
self.num_total += 1
self.scores.append(score)
if is_accepted:
self.num_accept += 1
self.scores_accept.append(score)
else:
self.num_reject += 1
if self.name == authors_list[0]:
self.first_author += 1
elif self.name == authors_list[-1]:
# elif to only increment solo author's first authorship, not senior
self.last_author += 1
# Affiliation (organization) object
class Affiliation:
def __init__(self, name):
self.name = name
self.num_total = 0
self.num_accept = 0
self.num_reject = 0
self.scores = []
self.scores_accept = []
def update(self, score, is_accepted):
self.num_total += 1
self.scores.append(score)
if is_accepted:
self.num_accept += 1
self.scores_accept.append(score)
else:
self.num_reject += 1
if __name__ == "__main__":
# If haven't downloaded csvs, do so
author_csv_path = 'authors_iclr2021.csv'
affil_csv_path = 'affiliations_iclr2021.csv'
if not os.path.exists(author_csv_path) or not os.path.exists(affil_csv_path):
# Start selenium
options = webdriver.FirefoxOptions()
options.headless = True
driver = webdriver.Firefox(options=options)
# Downloaded csv at https://docs.google.com/spreadsheets/d/1n58O0lgGI5kI0QQY9f4BDDpNB4oFjb5D51yMr9fHAK4/edit#gid=1546418007
csv_path = 'iclr2021_results_final.csv'
df = pd.read_csv(csv_path)
# Init dict records
authors_dict = {}
affils_dict = defaultdict(int)
# Go through each paper
for _, paper in tqdm(df.iterrows(), total=df.shape[0]):
# Paper info
url, score, is_accepted = paper['url'], paper['avg_rating'], 'Accept' in paper['final_decision']
# Nav to paper on openreview
driver.get(url)
html = driver.page_source
soup = BeautifulSoup(html, 'html.parser')
# Authors info
author_hrefs = [x['href'] for x in soup.find_all("a", {'data-placement': 'top'})]
author_names = [x.text for x in soup.find_all("a", {'data-placement': 'top'})]
base_url = 'https://openreview.net'
# Go through each author in paper
this_paper_affils = []
for author_href, author_name in zip(author_hrefs, author_names):
author_url = base_url + author_href
driver.get(author_url)
author_html = driver.page_source
author_soup = BeautifulSoup(author_html, 'html.parser')
author_id = author_href.replace('/profile?id=', '')
try:
author_affil = author_soup.find('div', class_='title-container').h3.contents[0]
except:
author_affil = None
# Record author
if author_id not in authors_dict:
authors_dict[author_id] = Author(author_name, author_affil)
authors_dict[author_id].update(author_names, score, is_accepted)
# Record affiliation, once per paper
if author_affil not in this_paper_affils and author_affil is not None:
if author_affil not in affils_dict:
affils_dict[author_affil] = Affiliation(author_affil)
else:
affils_dict[author_affil].update(score, is_accepted)
author_out_rows = [[a.name,
a.affil,
a.num_total,
a.num_accept,
a.num_reject,
(sum(a.scores) / float(len(a.scores))) if len(a.scores) > 0 else 0,
(sum(a.scores_accept) / float(len(a.scores_accept))) if len(a.scores_accept) > 0 else 0,
a.first_author,
a.last_author
] for a in authors_dict.values()]
author_df = pd.DataFrame(author_out_rows, columns=['Name',
'Affiliation',
'Submitted',
'Accepted',
'Rejected',
'AvgScore',
'AvgAcceptedScore',
'FirstAuthorCount',
'LastAuthorCount'
])
print(author_df)
author_accepted_df = author_df.sort_values('Accepted', ascending=False)
author_first_author_df = author_df.sort_values('FirstAuthorCount', ascending=False)
author_last_author_df = author_df.sort_values('LastAuthorCount', ascending=False)
author_accepted_df.to_csv('authors_iclr2021.csv', index=False)
author_first_author_df.to_csv('authors_first_iclr2021.csv', index=False)
author_last_author_df.to_csv('authors_last_iclr2021.csv', index=False)
print(f'Saved to author info to csvs')
affil_out_rows = [[a.name,
a.num_total,
a.num_accept,
a.num_reject,
(sum(a.scores) / float(len(a.scores))) if len(a.scores) > 0 else 0,
(sum(a.scores_accept) / float(len(a.scores_accept))) if len(a.scores_accept) > 0 else 0,
] for a in affils_dict.values()]
affil_df = pd.DataFrame(affil_out_rows, columns=['Name',
'Submitted',
'Accepted',
'Rejected',
'AvgScore',
'AvgAcceptedScore',
])
print(affil_df)
affil_accepted_df = affil_df.sort_values('Accepted', ascending=False)
affil_avgacceptedscore_df = affil_df.sort_values('AvgAcceptedScore', ascending=False)
affil_avgscore_df = affil_df.sort_values('AvgScore', ascending=False)
affil_accepted_df.to_csv('affiliations_iclr2021.csv', index=False)
affil_avgacceptedscore_df.to_csv('affiliations_avgacceptedscore_iclr2021.csv', index=False)
affil_avgscore_df.to_csv('affiliations_avgscore_iclr2021.csv', index=False)
print(f'Saved to affil info to csvs')
else:
# Open saved author info
author_df = pd.read_csv(author_csv_path)
print(author_df)
author_accepted_df = author_df.sort_values('Accepted', ascending=False)
author_first_author_df = author_df.sort_values('FirstAuthorCount', ascending=False)
author_last_author_df = author_df.sort_values('LastAuthorCount', ascending=False)
# Open saved affiliation info
affil_df = pd.read_csv(affil_csv_path)
affil_accepted_df = affil_df.sort_values('Accepted', ascending=False)
affil_avgacceptedscore_df = affil_df.sort_values('AvgAcceptedScore', ascending=False)
affil_avgscore_df = affil_df.sort_values('AvgScore', ascending=False)
print(affil_df)
print('Open the ipython notebook for visualizing data in pretty graphs')