-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtftorch.py
3811 lines (3089 loc) · 141 KB
/
tftorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import tensorflow.compat.v1 as tf
import six
from six import with_metaclass
from functools import partial
from collections import OrderedDict
from typing import Union, Tuple, Any, Callable, Iterable, Iterator, Set, Optional, overload, TypeVar, Mapping, Dict
from itertools import islice
import operator
#from torch._jit_internal import _copy_to_script_wrapper
def _copy_to_script_wrapper(fn):
return fn
import math
import numpy as np
import builtins as py
import re
from typing import TypeVar, Union, Tuple
#from .. import Tensor
# Create some useful type aliases
# Template for arguments which can be supplied as a tuple, or which can be a scalar which PyTorch will internally
# broadcast to a tuple.
# Comes in several variants: A tuple of unknown size, and a fixed-size tuple for 1d, 2d, or 3d operations.
T = TypeVar('T')
_scalar_or_tuple_any_t = Union[T, Tuple[T, ...]]
_scalar_or_tuple_1_t = Union[T, Tuple[T]]
_scalar_or_tuple_2_t = Union[T, Tuple[T, T]]
_scalar_or_tuple_3_t = Union[T, Tuple[T, T, T]]
_scalar_or_tuple_4_t = Union[T, Tuple[T, T, T, T]]
_scalar_or_tuple_5_t = Union[T, Tuple[T, T, T, T, T]]
_scalar_or_tuple_6_t = Union[T, Tuple[T, T, T, T, T, T]]
# For arguments which represent size parameters (eg, kernel size, padding)
_size_any_t = _scalar_or_tuple_any_t[int]
_size_1_t = _scalar_or_tuple_1_t[int]
_size_2_t = _scalar_or_tuple_2_t[int]
_size_3_t = _scalar_or_tuple_3_t[int]
_size_4_t = _scalar_or_tuple_4_t[int]
_size_5_t = _scalar_or_tuple_5_t[int]
_size_6_t = _scalar_or_tuple_6_t[int]
# For arguments that represent a ratio to adjust each dimension of an input with (eg, upsampling parameters)
_ratio_2_t = _scalar_or_tuple_2_t[float]
_ratio_3_t = _scalar_or_tuple_3_t[float]
_ratio_any_t = _scalar_or_tuple_any_t[float]
#_tensor_list_t = _scalar_or_tuple_any_t[Tensor]
# For the return value of max pooling operations that may or may not return indices.
# With the proposed 'Literal' feature to Python typing, it might be possible to
# eventually eliminate this.
#_maybe_indices_t = _scalar_or_tuple_2_t[Tensor]
# See https://mypy.readthedocs.io/en/latest/generics.html#generic-methods-and-generic-self for the use
# of `T` to annotate `self`. Many methods of `Module` return `self` and we want those return values to be
# the type of the subclass, not the looser type of `Module`.
T = TypeVar('T', bound='Module')
def calling(op, nresults=1):
if callable(op):
op = op()
if not isinstance(op, (tuple, list)):
op = [op]
if nresults is not None:
assert len(op) == nresults
return op
def absolute_variable_scope(scope=None, reuse=None, **kwargs):
if scope is None:
scope = tf.get_variable_scope().name
return tf.variable_scope(tf.VariableScope(name=scope, reuse=reuse, **kwargs), auxiliary_name_scope=False)
def resource_scope():
return absolute_variable_scope(use_resource=True)
class BackwardCFunction:#(_C._FunctionBase, _ContextMethodMixin, _HookMixin):
_is_legacy = False
def __init__(self):
self.saved_tensors = []
self.grad_variables = None
def save_for_backward(self, *tensors):
self.saved_tensors.extend(tensors)
def _apply(self, input_, **kwargs):
with resource_scope():
#return self._forward_cls.backward(self, *args)
self.props = kwargs
forward = partial(self._forward_cls.forward, self)
backward = partial(self._forward_cls.backward, self)
@tf.custom_gradient
def func(x):
def grad(dy, variables=None):
self.grad_variables = variables
return backward(dy)
return forward(x), grad
return func(input_)
def apply(self, input_):
return self._apply(input_, boxed=[input_], index=0, is_list=False)
class FunctionMeta(type):
"""Function metaclass.
This metaclass sets up the following properties:
_is_legacy: True if forward is not defined as a static method.
_backward_cls: The Function class corresponding to the differentiated
version of this function (which is generated on the fly by this
metaclass).
"""
def __init__(cls, name, bases, attrs):
for super_cls in cls.mro():
forward = super_cls.__dict__.get('forward')
if forward is not None:
has_static_forward = isinstance(forward, staticmethod) or isinstance(forward, classmethod)
break
cls._is_legacy = not has_static_forward
# old-style functions
if not has_static_forward:
return super(FunctionMeta, cls).__init__(name, bases, attrs)
backward_fn = type(name + 'Backward', (BackwardCFunction,), {'_forward_cls': cls})
cls._backward_cls = backward_fn
return super(FunctionMeta, cls).__init__(name, bases, attrs)
class Function(with_metaclass(FunctionMeta)):#, _C._FunctionBase, _ContextMethodMixin, _HookMixin)):
@classmethod
def apply(cls, *args, **kwargs): # real signature unknown
return cls._backward_cls().apply(*args, **kwargs)
@staticmethod
def forward(self, input_):
return input_
@staticmethod
def backward(self, grad_output):
return grad_output
# class _FooFunction(Function):
# @staticmethod
# def forward(ctx, input_):
# return input_
# @staticmethod
# def backward(ctx, grad_output):
# return tf.zeros_like(grad_output)
#_FooFunction.apply(tf.ones([16]))
# x = tf.constant(100.); y = _FooFunction.apply(x); dy = tf.gradients(y, x);
# class _Module:
# def __init__(self):
# pass
# def forward(self, x):
# return x
# def backward(self, dy):
# return dy
# def __call__(self, x):
# class _Call(Function):
# @staticmethod
# def forward(ctx, *args):
# self.ctx = ctx
# return self.forward(*args)
# @staticmethod
# def backward(ctx, *args):
# self.ctx = ctx
# return self.backward(*args)
# return _Call.apply(x)
def torch_typename(module):
return type(module)
def globalvar(name, **kws):
shape = kws.pop('shape')
initializer = kws.pop('initializer', None)
if initializer is None:
initializer = tf.initializers.zeros
collections = kws.pop('collections', ['variables'])
trainable = kws.pop('trainable', True)
use_resource = kws.pop('use_resource', True)
dtype = kws.pop('dtype', tf.float32)
return tf.get_variable(name, dtype=dtype, initializer=initializer, shape=shape, collections=collections, use_resource=use_resource, trainable=trainable, **kws)
def localvar(name, **kws):
collections = kws.pop('collections', ['local_variables'])
trainable = kws.pop('trainable', False)
use_resource = kws.pop('use_resource', True)
return globalvar(name, **kws, collections=collections, trainable=trainable, use_resource=use_resource)
# class Parameter(object):
# def __init__(self, initial_value, name, trainable=True):
# self.initial_value = initial_value
# self.trainable = trainable
# self.name = name
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import variables
class ParameterMeta(type):
def __init__(cls, *args, **kwargs):
print('ParameterMeta.__init__', cls, args, kwargs)
def __call__(cls, *args, **kwargs):
print('ParameterMeta.__call__', cls, args, kwargs)
if cls == Parameter:
#import pdb; pdb.set_trace()
name = kwargs.pop('name')
trainable = kwargs.pop('trainable', True)
(value,) = args
with absolute_variable_scope(reuse=tf.AUTO_REUSE):
initial_value = value
if callable(value):
value = value()
v = globalvar(name, shape=size(value), dtype=value.dtype, trainable=trainable)
init_(v, initial_value)
return v
return cls(*args, **kwargs)
def __instancecheck__(cls, instance):
if isinstance(instance, variables.Variable):
#print('ParameterMeta.__instancecheck__', cls, instance)
return True
return super().__instancecheck__(instance)
def __subclasscheck__(cls, subclass):
if issubclass(subclass, variables.Variable):
#print('ParameterMeta.__subclasscheck__', cls, subclass)
return True
return super().__subclasscheck__(subclass)
class Parameter(object, metaclass=ParameterMeta):
def __init__(self, *args, **kwargs):
print('Parameter.__init__', args, kwargs)
def __new__(cls, *args, **kwargs):
print(['Parameter.__new__', cls, args, kwargs])
try:
instance = super().__new__(cls, *args, **kwargs)
except TypeError:
instance = super().__new__(cls)
return instance
from tensorflow.python.framework import tensor_like
class TensorMeta(type):
def __init__(cls, *args, **kwargs):
print('TensorMeta.__init__', cls, args, kwargs)
def __call__(cls, *args, **kwargs):
print('TensorMeta.__call__', cls, args, kwargs)
if cls == Tensor:
value = tf.zeros(shape=args, **kwargs)
return value
return cls(*args, **kwargs)
def __instancecheck__(cls, instance):
if isinstance(instance, tensor_like._TensorLike):
#print('TensorMeta.__instancecheck__', cls, instance)
return True
return super().__instancecheck__(instance)
def __subclasscheck__(cls, subclass):
if issubclass(subclass, tensor_like._TensorLike):
#print('TensorMeta.__subclasscheck__', cls, subclass)
return True
return super().__subclasscheck__(subclass)
class Tensor(object, metaclass=TensorMeta):
def __init__(self, *args, **kwargs):
print('Tensor.__init__', args, kwargs)
def __new__(cls, *args, **kwargs):
print(['Tensor.__new__', cls, args, kwargs])
try:
instance = super().__new__(cls, *args, **kwargs)
except TypeError:
instance = super().__new__(cls, **kwargs)
if False and len(args) > 0 and isinstance(args[0], tf.Operation) and len(args[0].inputs) > 0:
handle = args[0].inputs[0]
if hasattr(handle, '_names'):
import pdb; pdb.set_trace()
instance._names = copy(handle._names)
print('Set names', instance._names)
else:
vs = tf.all_variables()
xs = [x.handle for x in vs if hasattr(x, 'handle')]
if handle in xs:
v = vs[xs.index(handle)]
if hasattr(v, '_names'):
instance._names = copy(v._names)
print('Set names', instance._names)
# print('TKTK')
# setattr(instance, '_names', args[0]._names)
return instance
from copy import copy
def TORCH_CHECK(condition, *message):
if not condition:
fmt = ' '.join(['%s' for x in message])
tf.logging.error(fmt, *message)
fmt = ' '.join(['{}' for x in message])
import pdb; pdb.set_trace()
raise ValueError(fmt.format(*message))
TORCH_INTERNAL_ASSERT = TORCH_CHECK
class ModuleAttributeError(AttributeError):
""" When `__getattr__` raises AttributeError inside a property,
AttributeError is raised with the property name instead of the
attribute that initially raised AttributeError, making the error
message uninformative. Using `ModuleAttributeError` instead
fixes this issue."""
def _addindent(s_, numSpaces):
s = s_.split('\n')
# don't do anything for single-line stuff
if len(s) == 1:
return s_
first = s.pop(0)
s = [(numSpaces * ' ') + line for line in s]
s = '\n'.join(s)
s = first + '\n' + s
return s
class Module(object):
r"""Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in
a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5)
self.conv2 = nn.Conv2d(20, 20, 5)
def forward(self, x):
x = F.relu(self.conv1(x))
return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their
parameters converted too when you call :meth:`to`, etc.
:ivar training: Boolean represents whether this module is in training or
evaluation mode.
:vartype training: bool
"""
r"""This allows better BC support for :meth:`load_state_dict`. In
:meth:`state_dict`, the version number will be saved as in the attribute
`_metadata` of the returned state dict, and thus pickled. `_metadata` is a
dictionary with keys that follow the naming convention of state dict. See
``_load_from_state_dict`` on how to use this information in loading.
If new parameters/buffers are added/removed from a module, this number shall
be bumped, and the module's `_load_from_state_dict` method can compare the
version number and do appropriate changes if the state dict is from before
the change."""
_version: int = 1
def __init__(self, scope=None, index=None, index_prefix='_', index_bias=0):
self.training = True
self._parent_scope = tf.get_variable_scope().name
self._scope = scope
self._variable_scope = None
self._index = index
self._index_prefix = index_prefix
self._index_bias = index_bias
self._updates = OrderedDict()
self._parameters = OrderedDict()
self._buffers = OrderedDict()
self._non_persistent_buffers_set = set()
self._backward_hooks = OrderedDict()
self._forward_hooks = OrderedDict()
self._forward_pre_hooks = OrderedDict()
self._state_dict_hooks = OrderedDict()
self._load_state_dict_pre_hooks = OrderedDict()
self._modules = OrderedDict()
self._input = None
self._output = None
def get_scope_name(self, name=None, index=None, postfix=None, prefix=None):
if name is None:
if self._scope is None:
name = type(self).__name__
else:
name = self._scope
if index is None:
index = self._index
if index is not None:
if index != 0:
name = name + self._index_prefix + str(index+self._index_bias)
if postfix is not None:
name = name + postfix
if prefix is not None:
name = prefix + name
return name
def scope(self, name=None, index=None, postfix=None, prefix=None, **kwargs):
name = self.get_scope_name(name=name, index=index, postfix=postfix, prefix=prefix)
return tf.variable_scope(name, reuse=tf.AUTO_REUSE, **kwargs)
def as_default(self):
parent_scope = self._parent_scope
if not isinstance(parent_scope, six.string_types):
raise TypeError("parent_scope should be a string. "
"Got {}".format(torch_typename(parent_scope)))
if len(parent_scope) > 0:
return self.scope(prefix=parent_scope+'/')
else:
return self.scope()
def globalvar(self, name, **kws):
return globalvar(name, **kws)
def localvar(self, name, **kws):
return localvar(name, **kws)
def register_parameter(self, name, value):
assert not hasattr(self, name)
if value is None:
setattr(self, name, value)
else:
initial_value = value
if callable(value):
value = value()
v = self.globalvar(name, shape=value.shape, dtype=value.dtype)
init_(v, initial_value)
setattr(self, name, v)
return getattr(self, name)
def register_buffer(self, name, value):
assert not hasattr(self, name)
if value is None:
setattr(self, name, value)
else:
initial_value = value
if callable(value):
value = value()
v = self.localvar(name, shape=value.shape, dtype=value.dtype, collections=['variables'])
init_(v, initial_value)
setattr(self, name, v)
return getattr(self, name)
def register_buffer(self, name: str, tensor: Optional[Tensor], persistent: py.bool = True) -> None:
r"""Adds a buffer to the module.
This is typically used to register a buffer that should not to be
considered a model parameter. For example, BatchNorm's ``running_mean``
is not a parameter, but is part of the module's state. Buffers, by
default, are persistent and will be saved alongside parameters. This
behavior can be changed by setting :attr:`persistent` to ``False``. The
only difference between a persistent buffer and a non-persistent buffer
is that the latter will not be a part of this module's
:attr:`state_dict`.
Buffers can be accessed as attributes using given names.
Args:
name (string): name of the buffer. The buffer can be accessed
from this module using the given name
tensor (Tensor): buffer to be registered.
persistent (bool): whether the buffer is part of this module's
:attr:`state_dict`.
Example::
>>> self.register_buffer('running_mean', torch.zeros(num_features))
"""
# if persistent is False and isinstance(self, torch.jit.ScriptModule):
# raise RuntimeError("ScriptModule does not support non-persistent buffers")
# TKTK: Try to support values created via lambda
initial_value = tensor
if callable(tensor):
tensor = tensor()
if '_buffers' not in self.__dict__:
raise AttributeError(
"cannot assign buffer before Module.__init__() call")
elif not isinstance(name, six.string_types):
raise TypeError("buffer name should be a string. "
"Got {}".format(torch_typename(name)))
elif '.' in name:
raise KeyError("buffer name can't contain \".\"")
elif name == '':
raise KeyError("buffer name can't be empty string \"\"")
elif hasattr(self, name) and name not in self._buffers:
raise KeyError("attribute '{}' already exists".format(name))
elif tensor is not None and not isinstance(tensor, Tensor):
raise TypeError("cannot assign '{}' object to buffer '{}' "
"(torch Tensor or None required)"
.format(torch_typename(tensor), name))
else:
if not isinstance(tensor, Parameter):
tensor = Parameter(initial_value, trainable=False, name=name)
self._buffers[name] = tensor
if persistent:
self._non_persistent_buffers_set.discard(name)
else:
self._non_persistent_buffers_set.add(name)
def register_parameter(self, name: str, param: Optional[Parameter]) -> None:
r"""Adds a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args:
name (string): name of the parameter. The parameter can be accessed
from this module using the given name
param (Parameter): parameter to be added to the module.
"""
if '_parameters' not in self.__dict__:
raise AttributeError(
"cannot assign parameter before Module.__init__() call")
elif not isinstance(name, six.string_types):
raise TypeError("parameter name should be a string. "
"Got {}".format(torch_typename(name)))
elif '.' in name:
raise KeyError("parameter name can't contain \".\"")
elif name == '':
raise KeyError("parameter name can't be empty string \"\"")
elif hasattr(self, name) and name not in self._parameters:
raise KeyError("attribute '{}' already exists".format(name))
if not isinstance(param, Parameter) and isinstance(param, Tensor):
param = self.globalvar(name, param)
if param is None:
self._parameters[name] = None
elif not isinstance(param, Parameter):
raise TypeError("cannot assign '{}' object to parameter '{}' "
"(torch.nn.Parameter or None required)"
.format(torch_typename(param), name))
elif getattr(param, 'grad_fn', None):
raise ValueError(
"Cannot assign non-leaf Tensor to parameter '{0}'. Model "
"parameters must be created explicitly. To express '{0}' "
"as a function of another Tensor, compute the value in "
"the forward() method.".format(name))
else:
self._parameters[name] = param
def add_module(self, name: str, module: Optional['Module']) -> None:
r"""Adds a child module to the current module.
The module can be accessed as an attribute using the given name.
Args:
name (string): name of the child module. The child module can be
accessed from this module using the given name
module (Module): child module to be added to the module.
"""
if not isinstance(module, Module) and module is not None:
raise TypeError("{} is not a Module subclass".format(
torch_typename(module)))
elif not isinstance(name, six.string_types):
raise TypeError("module name should be a string. Got {}".format(
torch_typename(name)))
elif hasattr(self, name) and name not in self._modules:
raise KeyError("attribute '{}' already exists".format(name))
elif '.' in name:
raise KeyError("module name can't contain \".\"")
elif name == '':
raise KeyError("module name can't be empty string \"\"")
self._modules[name] = module
def register_update(self, name: str, ops) -> None:
if not isinstance(name, six.string_types):
raise TypeError("update name should be a string. Got {}".format(
torch_typename(name)))
elif hasattr(self, name) and name not in self._updates:
raise KeyError("attribute '{}' already exists".format(name))
elif '.' in name:
raise KeyError("update name can't contain \".\"")
elif name == '':
raise KeyError("update name can't be empty string \"\"")
self._updates[name] = ops
def should_update(self):
if self.training:
return True
return False
def maybe_update(self, name: str, yes, no, *, should=None):
if should is None:
should = self.should_update
if should():
yes = calling(yes, 1)[0]
self.register_update(name=name, ops=yes)
return yes
else:
self.register_update(name=name, ops=None)
no = calling(no, 1)[0]
return no
def _apply(self, fn):
for module in self.children():
module._apply(fn)
return self
def apply(self: T, fn: Callable[['Module'], None]) -> T:
r"""Applies ``fn`` recursively to every submodule (as returned by ``.children()``)
as well as self. Typical use includes initializing the parameters of a model
(see also :ref:`nn-init-doc`).
Args:
fn (:class:`Module` -> None): function to be applied to each submodule
Returns:
Module: self
"""
for module in self.children():
module.apply(fn)
fn(self)
return self
def __call__(self, *input, **kwargs):
self.__dict__['_input'] = [input, kwargs]
result = self.forward(*input, **kwargs)
self.__dict__['_output'] = [result]
return result
def named_members(self, get_members_fn, prefix='', recurse=True):
r"""Helper method for yielding various names + members of modules."""
memo = set()
modules = self.named_modules(prefix=prefix) if recurse else [(prefix, self)]
for module_prefix, module in modules:
members = get_members_fn(module)
for k, v in members:
if v is None or v in memo:
continue
memo.add(v)
name = module_prefix + ('.' if module_prefix else '') + k
yield name, v
def updates(self, recurse: py.bool = True) -> Iterator[Iterable[tf.Operation]]:
r"""Returns an iterator over module updates.
Args:
recurse (bool): if True, then yields updates of this module
and all submodules. Otherwise, yields only updates that
are direct members of this module.
Yields:
Operations: module updates
"""
for name, ops in self.named_updates(recurse=recurse):
yield ops
def named_updates(self, prefix: str = '', recurse: py.bool = True) -> Iterator[Tuple[str, Iterable[tf.Operation]]]:
r"""Returns an iterator over module updates, yielding both the
name of the update as well as the updates themselves.
Args:
prefix (str): prefix to prepend to all update names.
recurse (bool): if True, then yields updates of this module
and all submodules. Otherwise, yields only updates that
are direct members of this module.
Yields:
(string, Operation[]): Tuple containing the name and updates
"""
gen = self.named_members(
lambda module: module._updates.items(),
prefix=prefix, recurse=recurse)
for elem in gen:
yield elem
def parameters(self, recurse: py.bool = True) -> Iterator[Parameter]:
r"""Returns an iterator over module parameters.
This is typically passed to an optimizer.
Args:
recurse (bool): if True, then yields parameters of this module
and all submodules. Otherwise, yields only parameters that
are direct members of this module.
Yields:
Parameter: module parameter
Example::
>>> for param in model.parameters():
>>> print(type(param), param.size())
<class 'torch.Tensor'> (20L,)
<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
"""
for name, param in self.named_parameters(recurse=recurse):
yield param
def named_parameters(self, prefix: str = '', recurse: py.bool = True) -> Iterator[Tuple[str, Tensor]]:
r"""Returns an iterator over module parameters, yielding both the
name of the parameter as well as the parameter itself.
Args:
prefix (str): prefix to prepend to all parameter names.
recurse (bool): if True, then yields parameters of this module
and all submodules. Otherwise, yields only parameters that
are direct members of this module.
Yields:
(string, Parameter): Tuple containing the name and parameter
Example::
>>> for name, param in self.named_parameters():
>>> if name in ['bias']:
>>> print(param.size())
"""
gen = self.named_members(
lambda module: module._parameters.items(),
prefix=prefix, recurse=recurse)
for elem in gen:
yield elem
def buffers(self, recurse: py.bool = True) -> Iterator[Tensor]:
r"""Returns an iterator over module buffers.
Args:
recurse (bool): if True, then yields buffers of this module
and all submodules. Otherwise, yields only buffers that
are direct members of this module.
Yields:
torch.Tensor: module buffer
Example::
>>> for buf in model.buffers():
>>> print(type(buf), buf.size())
<class 'torch.Tensor'> (20L,)
<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
"""
for name, buf in self.named_buffers(recurse=recurse):
yield buf
def named_buffers(self, prefix: str = '', recurse: py.bool = True) -> Iterator[Tuple[str, Tensor]]:
r"""Returns an iterator over module buffers, yielding both the
name of the buffer as well as the buffer itself.
Args:
prefix (str): prefix to prepend to all buffer names.
recurse (bool): if True, then yields buffers of this module
and all submodules. Otherwise, yields only buffers that
are direct members of this module.
Yields:
(string, torch.Tensor): Tuple containing the name and buffer
Example::
>>> for name, buf in self.named_buffers():
>>> if name in ['running_var']:
>>> print(buf.size())
"""
gen = self.named_members(
lambda module: module._buffers.items(),
prefix=prefix, recurse=recurse)
for elem in gen:
yield elem
def children(self) -> Iterator['Module']:
r"""Returns an iterator over immediate children modules.
Yields:
Module: a child module
"""
for name, module in self.named_children():
yield module
def named_children(self) -> Iterator[Tuple[str, 'Module']]:
r"""Returns an iterator over immediate children modules, yielding both
the name of the module as well as the module itself.
Yields:
(string, Module): Tuple containing a name and child module
Example::
>>> for name, module in model.named_children():
>>> if name in ['conv4', 'conv5']:
>>> print(module)
"""
memo = set()
for name, module in self._modules.items():
if module is not None and module not in memo:
memo.add(module)
yield name, module
def modules(self) -> Iterator['Module']:
r"""Returns an iterator over all modules in the network.
Yields:
Module: a module in the network
Note:
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example::
>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)
"""
for name, module in self.named_modules():
yield module
def named_modules(self, memo: Optional[Set['Module']] = None, prefix: str = ''):
r"""Returns an iterator over all modules in the network, yielding
both the name of the module as well as the module itself.
Yields:
(string, Module): Tuple of name and module
Note:
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example::
>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
"""
if memo is None:
memo = set()
if self not in memo:
memo.add(self)
yield prefix, self
for name, module in self._modules.items():
if module is None:
continue
submodule_prefix = prefix + ('.' if prefix else '') + name
for m in module.named_modules(memo, submodule_prefix):
yield m
def train(self: T, mode: bool = True) -> T:
r"""Sets the module in training mode.
This has any effect only on certain modules. See documentations of
particular modules for details of their behaviors in training/evaluation
mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
etc.
Args:
mode (bool): whether to set training mode (``True``) or evaluation
mode (``False``). Default: ``True``.
Returns:
Module: self
"""
self.training = mode
for module in self.children():
module.train(mode)
return self
def eval(self: T) -> T:
r"""Sets the module in evaluation mode.
This has any effect only on certain modules. See documentations of
particular modules for details of their behaviors in training/evaluation
mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
etc.
This is equivalent with :meth:`self.train(False) <torch.nn.Module.train>`.
Returns:
Module: self
"""
return self.train(False)
def __setstate__(self, state):
self.__dict__.update(state)
# Support loading old checkpoints that don't have the following attrs:
if '_forward_pre_hooks' not in self.__dict__:
self._forward_pre_hooks = OrderedDict()
if '_state_dict_hooks' not in self.__dict__:
self._state_dict_hooks = OrderedDict()
if '_load_state_dict_pre_hooks' not in self.__dict__:
self._load_state_dict_pre_hooks = OrderedDict()
if '_non_persistent_buffers_set' not in self.__dict__:
self._non_persistent_buffers_set = set()
def __getattr__(self, name: str) -> Union[Tensor, 'Module']:
if '_parameters' in self.__dict__:
_parameters = self.__dict__['_parameters']
if name in _parameters:
return _parameters[name]
if '_buffers' in self.__dict__:
_buffers = self.__dict__['_buffers']
if name in _buffers:
return _buffers[name]
if '_modules' in self.__dict__:
modules = self.__dict__['_modules']
if name in modules:
return modules[name]
raise ModuleAttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, name))
def __setattr__(self, name: str, value: Union[Tensor, 'Module']) -> None:
def remove_from(*dicts_or_sets):
for d in dicts_or_sets:
if name in d:
if isinstance(d, dict):
del d[name]
else:
d.discard(name)
params = self.__dict__.get('_parameters')
if isinstance(value, Parameter):
if params is None:
raise AttributeError(
"cannot assign parameters before Module.__init__() call")
remove_from(self.__dict__, self._buffers, self._modules, self._non_persistent_buffers_set)
self.register_parameter(name, value)
elif params is not None and name in params:
if value is not None:
raise TypeError("cannot assign '{}' as parameter '{}' "
"(torch.nn.Parameter or None expected)"
.format(torch_typename(value), name))
self.register_parameter(name, value)
else:
modules = self.__dict__.get('_modules')
if isinstance(value, Module):
if modules is None:
raise AttributeError(
"cannot assign module before Module.__init__() call")
remove_from(self.__dict__, self._parameters, self._buffers, self._non_persistent_buffers_set)
modules[name] = value
elif modules is not None and name in modules:
if value is not None:
raise TypeError("cannot assign '{}' as child module '{}' "
"(torch.nn.Module or None expected)"
.format(torch_typename(value), name))
modules[name] = value
else:
buffers = self.__dict__.get('_buffers')