-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathnode2vec_demo.py
63 lines (47 loc) · 1.83 KB
/
node2vec_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# -*- coding: utf-8 -*-
"""
@author:XuMing([email protected])
@description:
"""
import os
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.manifold import TSNE
from rater.models.graph.classify import read_node_label, Classifier
from rater.models.graph.node2vec import Node2Vec
pwd_path = os.path.abspath(os.path.dirname(__file__))
label_file = os.path.join(pwd_path, '../data/wiki/wiki_labels.txt')
edge_file = os.path.join(pwd_path, '../data/wiki/wiki_edgelist.txt')
def evaluate_embeddings(embeddings, label_file):
X, Y = read_node_label(label_file, skip_head=True)
tr_frac = 0.8
print("Training classifier using {:.2f}% nodes...".format(
tr_frac * 100))
clf = Classifier(embeddings=embeddings, clf=LogisticRegression(solver='lbfgs'))
clf.split_train_evaluate(X, Y, tr_frac)
def plot_embeddings(embeddings, label_file):
X, Y = read_node_label(label_file, skip_head=True)
emb_list = []
for k in X:
emb_list.append(embeddings[k])
emb_list = np.array(emb_list)
model = TSNE(n_components=2)
node_pos = model.fit_transform(emb_list)
color_idx = {}
for i in range(len(X)):
color_idx.setdefault(Y[i][0], [])
color_idx[Y[i][0]].append(i)
for c, idx in color_idx.items():
plt.scatter(node_pos[idx, 0], node_pos[idx, 1], label=c)
plt.legend()
plt.show()
if __name__ == "__main__":
G = nx.read_edgelist(edge_file, create_using=nx.DiGraph(), nodetype=None, data=[('weight', int)])
model = Node2Vec(G, walk_length=10, num_walks=80,
p=1, q=1, workers=1, use_rejection_sampling=0)
model.train(window_size=5, iter=3)
embeddings = model.get_embeddings()
evaluate_embeddings(embeddings, label_file)
plot_embeddings(embeddings, label_file)