-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtaskqueue.cpp
248 lines (205 loc) · 4.43 KB
/
taskqueue.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#include <iostream>
#include <thread>
#include <vector>
#include <mutex>
// small parallel BVH (object splitting) construction simulator (c) shinji ogaki
struct Range
{
int Start;
int End;
void Set(int s, int e)
{
Start = s;
End = e;
std::cout << "[" << std::this_thread::get_id() << "]\t" << Start << "\t" << End << std::endl;
}
int Partition() const
{
return (Start + End) / 2;
}
int Length() const
{
return End - Start;
}
};
//#define BUSY
#ifdef BUSY
struct BVH
{
static const int LeafCount = 4;
// depth x 2 x num of threads is enough for binary tree
Range Ranges[1024];
std::mutex Mutex;
int Progress;
int MaxElems;
int NumTasks;
void InsertRange(const Range& r)
{
std::lock_guard<std::mutex> lock(Mutex);
// Node
if (LeafCount < r.Length())
{
// create inner node
const auto partition = r.Partition();
Ranges[NumTasks + 0].Set(r.Start, partition);
Ranges[NumTasks + 1].Set(partition, r.End);
// two tasks added
NumTasks += 2;
}
// Leaf
else
{
Progress += r.Length();
}
}
bool GetRange(Range& r)
{
std::lock_guard<std::mutex> lock(Mutex);
// NumTasks=0 doesn't necessarily mean that build is done
if (0 < NumTasks)
{
--NumTasks; // single task is taken
r = Ranges[NumTasks]; // task
return true;
}
return false;
}
bool UnderConstruction()
{
// Yuichi Sayama's idea
return (Progress < MaxElems);
}
void ProcessRange(const Range& r)
{
// do something expensive
std::this_thread::sleep_for(std::chrono::milliseconds(10 + r.Length()));
// insert new node & ranges
InsertRange(r);
}
void Build(const int max_elems)
{
const auto num_threads = std::thread::hardware_concurrency();
Progress = 0;
NumTasks = 1;
MaxElems = max_elems;
Ranges[0].Set(0, max_elems);
// alloc
std::vector<std::thread> threads(num_threads);
// create threads
for (auto i = 0u; i < num_threads; ++i)
threads[i] = std::thread([&]
{
Range p;
while (UnderConstruction())
if (GetRange(p))
ProcessRange(p);
});
// wait!
for (auto& thread : threads)
thread.join();
}
};
#else
struct BVH
{
static const int LeafCount = 4;
Range Ranges[1024];
std::mutex Mutex;
std::condition_variable CV;
int Progress;
int MaxElems;
int NumTasks;
bool IsDone() const
{
// Yuichi Sayama's idea
return (MaxElems <= Progress);
}
void InsertRange(const Range& r)
{
std::unique_lock<std::mutex> lock(Mutex);
// Node
if (LeafCount < r.Length())
{
// create inner node
const auto partition = r.Partition();
Ranges[NumTasks + 0].Set(r.Start, partition);
Ranges[NumTasks + 1].Set(partition, r.End);
// two tasks added
NumTasks += 2;
CV.notify_all();
}
// Leaf
else
{
Progress += r.Length();
// tell everybody if construction is done
if (IsDone())
{
CV.notify_all();
}
}
}
bool GetRange(Range& r)
{
std::unique_lock<std::mutex> lock(Mutex);
CV.wait(lock, [&]
{
return (0 < NumTasks) || IsDone();
});
if (IsDone())
{
return false;
}
// NumTasks=0 doesn't necessarily mean that build is done
--NumTasks; // single task is taken
r = Ranges[NumTasks]; // task
return true;
}
void ProcessRange(const Range& r)
{
// do something expensive
std::this_thread::sleep_for(std::chrono::milliseconds(10 + r.Length()));
// insert new node & ranges
InsertRange(r);
}
void Build(const int max_elems)
{
const auto num_threads = std::thread::hardware_concurrency();
Progress = 0;
NumTasks = 1;
MaxElems = max_elems;
Ranges[0].Set(0, max_elems);
// alloc
std::vector<std::thread> threads(num_threads);
// create threads
for (auto i = 0u; i < num_threads; ++i)
threads[i] = std::thread([&]
{
Range p;
while (GetRange(p))
{
ProcessRange(p);
}
});
// wait!
for (auto& thread : threads)
{
thread.join();
}
}
};
#endif
int main()
{
// start
const auto start = std::chrono::system_clock::now();
// build bvh
BVH bvh;
bvh.Build(64);
// end
const auto end = std::chrono::system_clock::now();
// log
const auto elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
std::cout << elapsed << " [msec]" << std::endl;
return 0;
}