-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·159 lines (149 loc) · 6.43 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import argparse
import os.path
from datetime import datetime
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import yaml
from torch.autograd import Variable
from tqdm import tqdm
import models
import utils
from datasets import vqa_dataset
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def train(model, loader, optimizer, tracker, epoch, split):
model.train()
tracker_class, tracker_params = \
tracker.MovingMeanMonitor, {'momentum': 0.99}
tq = tqdm(loader, desc='{} E{:03d}'.format(split, epoch), ncols=0)
loss_tracker = tracker.track('{}_loss'.format(split),
tracker_class(**tracker_params))
acc_tracker = tracker.track('{}_acc'.format(split),
tracker_class(**tracker_params))
log_softmax = nn.LogSoftmax(dim=1).to(device)
for item in tq:
v = item['visual']
q = item['question']
a = item['answer']
q_length = item['q_length']
v = Variable(v.to(device))
q = Variable(q.to(device))
a = Variable(a.to(device))
q_length = Variable(q_length.to(device))
out = model(v, q, q_length)
nll = -log_softmax(out)
loss = (nll * a / 10).sum(dim=1).mean()
acc = utils.vqa_accuracy(out.data, a.data).cpu()
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_tracker.append(loss.item())
acc_tracker.append(acc.mean())
fmt = '{:.4f}'.format
tq.set_postfix(loss=fmt(loss_tracker.mean.value),
acc=fmt(acc_tracker.mean.value))
def evaluate(model, loader, tracker, epoch, split):
model.eval()
tracker_class, tracker_params = tracker.MeanMonitor, {}
predictions = []
samples_ids = []
accuracies = []
tq = tqdm(loader, desc='{} E{:03d}'.format(split, epoch), ncols=0)
loss_tracker = tracker.track('{}_loss'.format(split),
tracker_class(**tracker_params))
acc_tracker = tracker.track('{}_acc'.format(split),
tracker_class(**tracker_params))
log_softmax = nn.LogSoftmax(dim=1).to(device)
with torch.no_grad():
for item in tq:
v = item['visual']
q = item['question']
a = item['answer']
sample_id = item['sample_id']
q_length = item['q_length']
v = Variable(v.to(device))
q = Variable(q.to(device))
a = Variable(a.to(device))
q_length = Variable(q_length.to(device))
out = model(v, q, q_length)
nll = -log_softmax(out)
loss = (nll * a / 10).sum(dim=1).mean()
acc = utils.vqa_accuracy(out.data, a.data).cpu()
_, answer = out.data.cpu().max(dim=1)
predictions.append(answer.view(-1))
accuracies.append(acc.view(-1))
samples_ids.append(sample_id.view(-1).clone())
loss_tracker.append(loss.item())
acc_tracker.append(acc.mean())
fmt = '{:.4f}'.format
tq.set_postfix(loss=fmt(loss_tracker.mean.value),
acc=fmt(acc_tracker.mean.value))
predictions = list(torch.cat(predictions, dim=0))
accuracies = list(torch.cat(accuracies, dim=0))
samples_ids = list(torch.cat(samples_ids, dim=0))
eval_results = {
'answers': predictions,
'accuracies': accuracies,
'samples_ids': samples_ids,
'avg_accuracy': acc_tracker.mean.value,
'avg_loss': loss_tracker.mean.value
}
return eval_results
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--path_config', default='config/default.yaml',
type=str, help='path to a yaml config file')
args = parser.parse_args()
if args.path_config is not None:
with open(args.path_config, 'r') as f:
config = yaml.load(f)
prefix = datetime.now().strftime("%y%m%d%H%M%S")
results_dir = config['training']['results']
if not os.path.exists(results_dir):
os.makedirs(results_dir)
print('Model logs will be saved in {}'.format(results_dir))
cudnn.benchmark = True
# Generate datasets and loaders
train_loader = vqa_dataset.get_loader(config, split='train')
val_loader = vqa_dataset.get_loader(config, split='val')
model = nn.DataParallel(models.Model(config,
train_loader.dataset.num_tokens)).to(device)
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad,
model.parameters()), config['training']['lr'])
features_type = train_loader.dataset.features_type
print(features_type)
# Load model weights if necessary
if config['model']['pretrained'] is not None:
print("Loading Model from %s" % config['model']['pretrained'])
pretrained = torch.load(config['model']['pretrained'])
weights = pretrained['weights']
model.load_state_dict(weights)
tracker = utils.Tracker()
min_loss = 10
max_accuracy = 0
best_accuracy = prefix + features_type + '-best_accuracy.pth'
best_loss = prefix + features_type + '-best_loss.pth'
path_best_accuracy = results_dir + '/' + best_accuracy
path_best_loss = results_dir + '/' + best_loss
for i in range(config['training']['epochs']):
train(model, train_loader, optimizer, tracker, epoch=i,
split=config['training']['split'])
if config['training']['split'] == 'train':
eval_results = evaluate(model, val_loader, tracker, epoch=i, split='val')
log_data = {'epoch': i, 'tracker': tracker.to_dict(), 'config': config,
'weights': model.state_dict(), 'eval_results': eval_results,
'vocabs': train_loader.dataset.vocabs}
if eval_results['avg_loss'] < min_loss:
torch.save(log_data, path_best_loss)
min_loss = eval_results['avg_loss']
if eval_results['avg_accuracy'] > max_accuracy:
torch.save(log_data, path_best_accuracy)
max_accuracy = eval_results['avg_accuracy']
# Save final model
log_data = {'tracker': tracker.to_dict(), 'config': config,
'weights': model.state_dict(), 'vocabs': train_loader.dataset.vocabs}
final = prefix + '-final.pth'
path_final_log = results_dir + '/' + final
torch.save(log_data, path_final_log)
if __name__ == '__main__':
main()