forked from pydata/xarray
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmemory.py
48 lines (35 loc) · 1.43 KB
/
memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from __future__ import absolute_import, division, print_function
import copy
import numpy as np
from ..core.pycompat import OrderedDict
from ..core.variable import Variable
from .common import AbstractWritableDataStore
class InMemoryDataStore(AbstractWritableDataStore):
"""
Stores dimensions, variables and attributes in ordered dictionaries, making
this store fast compared to stores which save to disk.
This store exists purely for internal testing purposes.
"""
def __init__(self, variables=None, attributes=None):
self._variables = OrderedDict() if variables is None else variables
self._attributes = OrderedDict() if attributes is None else attributes
def get_attrs(self):
return self._attributes
def get_variables(self):
return self._variables
def get_dimensions(self):
dims = OrderedDict()
for v in self._variables.values():
for d, s in v.dims.items():
dims[d] = s
return dims
def prepare_variable(self, k, v, *args, **kwargs):
new_var = Variable(v.dims, np.empty_like(v), v.attrs)
self._variables[k] = new_var
return new_var, v.data
def set_attribute(self, k, v):
# copy to imitate writing to disk.
self._attributes[k] = copy.deepcopy(v)
def set_dimension(self, d, l, unlimited_dims=None):
# in this model, dimensions are accounted for in the variables
pass