-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathGraphDS.java
353 lines (333 loc) · 10.8 KB
/
GraphDS.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
// 25th march- https://1drv.ms/u/s!ApNLaUHTgtzbkHna1aR740JYngeq?e=ypIbYi
// Graph
// vertex, edge
// connected/ disconnected
// Cyclic/non-cyclic (or acyclic)
// directed/undirected
// bfs/dfs
// tree is non-cyclic directed graph
// Representation - 1. adjacency matrix, 2. adjacency list
// 27 March - dfs, bfs, grid problem, snake and ladder problem
// 28 March - dfs recursion, cycle in directed and undirected graph
// 28th march
import java.util.*;
class GraphAdjacencyMatrix {
int[][] graph;
public GraphAdjacencyMatrix() { // constructor is creating graph
Scanner sc = new Scanner(System.in);
System.out.println("input number of nodes");
int n = sc.nextInt();
graph = new int[n][n];
for(int i = 0; i < n; i++) {
for(int j = 0;j < n; j++) {
graph[i][j] = 0;
}
}
int edges;
System.out.println("input number of edges");
edges = sc.nextInt();
for(int i = 0; i < edges; i++) {
System.out.println("input edge");
int starting = sc.nextInt();
int ending = sc.nextInt();
graph[starting][ending] = 1;
}
}
public void bfs() { // in adjacency matrix using stack. O(n*n)
int n = graph.length;
// print bfs of tree
Queue<Integer> q = new LinkedList<>();
boolean[] visited = new boolean[n];
for(int i = 0; i < n; i++) {
visited[i] = false;
}
// we need to traverse whole graph.
for(int start = 0; start < n; start++) {
// start bfs considering start as source node
q.add(start);
if (!visited[start]) {
visited[start] = true;
bfs_util(q, visited, n);
}
}
}
private void bfs_util(Queue<Integer> q, boolean[] visited, int n) {
while(!q.isEmpty()) {
// pop first element
int front = q.remove();
// print element
System.out.print(front);
// push connected non-visited nodes in queue
for(int i = 0; i < n; i++) {
if (graph[front][i] == 1) {
// it means there is edge between front -> i
if (!visited[i]) {
q.add(i);
visited[i] = true;
}
}
}
}
}
}
class GraphAdjacencyList {
ArrayList<ArrayList<Integer> > graph;
public GraphAdjacencyList() {
Scanner sc = new Scanner(System.in);
System.out.println("input number of nodes");
int n = sc.nextInt();
graph = new ArrayList<>(n);
int edges;
System.out.println("input number of edges");
edges = sc.nextInt();
for(int i = 0; i < edges; i++) {
System.out.println("input edge");
int starting = sc.nextInt();
int ending = sc.nextInt();
graph.get(starting).add(ending);
}
}
public void bfs() { // O(n+e)
int n = graph.size();
// print bfs of tree
Queue<Integer> q = new LinkedList<>();
boolean[] visited = new boolean[n];
for(int i = 0; i < n; i++) {
visited[i] = false;
}
// we need to traverse whole graph.
for(int start = 0; start < n; start++) { // to handle disconnected graphs
// start bfs considering start as source node
if (!visited[start]) {
q.add(start);
visited[start] = true;
bfs_util(q, visited);
}
}
}
private void bfs_util(Queue<Integer> q, boolean[] visited) {
while(!q.isEmpty()) {
// pop first element
int front = q.remove();
// print element
System.out.print(front);
// push connected non-visited nodes in queue
for(int i = 0; i < graph.get(front).size(); i++) {
int element = graph.get(front).get(i);
if (!visited[element]) {
q.add(element);
visited[element] = true;
}
}
}
}
public void dfs() { // O(n+e)
int n = graph.size();
// print bfs of tree
Stack<Integer> stk = new Stack<>();
boolean[] visited = new boolean[n];
for(int i = 0; i < n; i++) {
visited[i] = false;
}
// we need to traverse whole graph.
for(int start = 0; start < n; start++) { // to handle disconnected graphs
// start bfs considering start as source node
if (!visited[start]) {
stk.add(start);
visited[start] = true;
dfs_util(stk, visited);
}
}
}
private void dfs_util(Stack<Integer> stk, boolean[] visited) {
while(!stk.isEmpty()) {
// pop first element
int front = stk.pop();
// print element
System.out.print(front);
// push connected non-visited nodes in queue
for(int i = 0; i < graph.get(front).size(); i++) {
int element = graph.get(front).get(i);
if (!visited[element]) {
stk.add(element);
visited[element] = true;
}
}
}
}
public int distance(int source, int destination) {
int n = graph.size();
// print bfs of tree
Queue<Integer> q = new LinkedList<>();
boolean[] visited = new boolean[n];
for(int i = 0; i < n; i++) {
visited[i] = false;
}
q.add(source);
q.add(-1);
visited[source] = true;
int distance = 0;
while(q.size() != 1) {
int front = q.remove();
// print element
if (front == -1) {
distance++;
q.add(-1);
continue;
}
for(int i = 0; i < graph.get(front).size(); i++) {
int element = graph.get(front).get(i);
if (element == destination) {
return distance;
}
if (!visited[element]) {
q.add(element);
visited[element] = true;
}
}
}
return -1;
}
class Pair {
int x;
int y;
public Pair(int a, int b) {
x = a;
y = b;
}
}
public boolean isConnected(int[][] mat) {
int rows = 5;
int columns = 10;
Pair source = new Pair(0,0);
Pair destination = new Pair(4,9);
Queue<Pair> q = new LinkedList<>();
q.add(source);
while(!q.isEmpty()) {
Pair node = q.remove();
if (node.x == destination.x && node.y == destination.y) {
return true;
}
Pair temp;
// try right side
if (node.y != 9) {
// it is not the rightmost column
temp = new Pair(node.x, node.y+1);
}
// try down side
if (node.x != 4) {
// it is not the downmost row
temp = new Pair(node.x+1, node.y);
}
if (mat[temp.x][temp.y] == 0) {
q.add(temp);
}
}
return false;
}
class ParentNodePair {
int parent;
int node;
public ParentNodePair(int a, int b) {
parent = b;
node = a;
}
}
public boolean detectCycleUndirected() { // O(v + e)
// taking BFS approach.
int n = graph.size();
Queue<ParentNodePair> q = new LinkedList<>(); // for dfs, it would either be stack or recursion.
boolean[] visited = new boolean[graph.size()];
for(int i = 0; i < n; i++) {
visited[i] = false;
}
for(int i = 0; i < graph.size(); i++) {
if (!visited[i]) {
// add in queue
visited[i] = true;
q.add(new ParentNodePair(i, -1));
if (detectCycleUndirectedUtil(q, visited)) {
return true;
}
}
}
return false;
}
private boolean detectCycleUndirectedUtil(Queue<ParentNodePair> q, boolean visited[]) {
while(!q.isEmpty()) {
ParentNodePair pp = q.remove();
// push its connected elements to queue
for(int i = 0; i < graph.get(pp.node).size(); i++) { // traverse adjacency list of node
int dest = graph.get(pp.node).get(i);
if (visited[dest] && dest != pp.parent) {
// it means there is a cycle
return true;
}
// push this into queue
q.add(new ParentNodePair(dest, pp.node));
visited[dest] = true;
}
}
return false;
}
public boolean detectCycleDirected() {
int n = graph.size();
// we will use DFS with recursion
boolean[] visited = new boolean[n];
boolean[] recVisited = new boolean[n];
for(int i = 0; i < n; i++) {
visited[i] = false;
recVisited[i] = false;
}
for(int i = 0; i < n; i++) {
if (!visited[i]) {
// call dfs recursively
if (detectCycleDirectedUtil(i, visited, recVisited, n)) {
return true;
}
}
}
return false;
}
private boolean detectCycleDirectedUtil(int node, boolean[] visited, boolean[] recVisited, int n) {
// base case
if (recVisited[node]) {
return true; // there is a cycle
}
// otherwise we will proceed
if (visited[node]) {
return false;
}
// call recursively for connected nodes.
visited[node] = true;
recVisited[node] = true;
for(int i = 0; i < graph.get(node).size(); i++) {
int dest = graph.get(node).get(i);
if (detectCycleDirectedUtil(dest, visited, recVisited, n)) {
return true;
}
}
recVisited[node] = false;
return false;
}
}
public class GraphDS {
public static void main(String[] args) {
// Question: Given n cities(numbered 0 to n-1) and road connection between them, tell whether we can reach from x to y?
// inputformat:
// n // first line
// x y // second line
// e // number of edges, then following e lines contains the edges with space separation
// sample
// 5
// 2 0 // means can we reach 0 from 2
// 5
// 0 1
// 2 3
// 2 4
// 4 0
// 2 0
//
GraphAdjacencyMatrix matrix = new GraphAdjacencyMatrix();
}
}