-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
432 lines (387 loc) · 18.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import torch
from fastNLP import DataSet
from fastNLP import Instance
from fastNLP import Vocabulary
from fastNLP.embeddings import StaticEmbedding
from fastNLP.io import DataBundle, Pipe
from fastNLP.io import Loader
from fastNLP import Trainer, GradientClipCallback, WarmupCallback, EvaluateCallback
from fastNLP import CrossEntropyLoss
from fastNLP.embeddings import BertWordPieceEncoder
from fastNLP import BucketSampler
from transformers.utils.dummy_flax_objects import FlaxGPTNeoForCausalLM
#from fastNLP.modules.decoder import TransformerSeq2SeqDecoder
from model.Decoder import TransformerSeq2SeqDecoder
#from fastNLP.modules.generator import SequenceGenerator
from model.Generator import SequenceGenerator
from torch.optim import Adam
from fastNLP.models import CNNText, STSeqCls
from fastNLP import AccuracyMetric
from transformers import BertTokenizer
from torch.autograd import Variable
from functools import partial
import random
import argparse
import json
from torch import nn
from transformers import BertModel
import copy
from rouge import Rouge
import numpy as np
SEP = '[SEP]'
CLS = '[CLS]'
PAD = '[PAD]'
BOS = '[CLS]'
EOS = '[SEP]'
ANS_SPLIT = '[unused3]'
class Bert2tf(nn.Module):
def __init__(self, opt, tokenizer):
super(Bert2tf, self).__init__()
self.encoder = BertModel.from_pretrained("bert-base-uncased")
#self.encoder = RobertaModel.from_pretrained("bert-base-multilingual-cased")
self.tokenizer = tokenizer
self.vocab_size = len(tokenizer.vocab)
self.hidden_size = 768
self.pad_index = 0
#print(tokenizer.cls_token, tokenizer.pad_token, tokenizer.sep_token)
self.bos_index = self.tokenizer.vocab[BOS]
self.eos_index = self.tokenizer.vocab[EOS]
tgt_embedding = nn.Embedding(self.vocab_size, self.hidden_size)
tgt_embedding = self.encoder.get_input_embeddings()
self.ffn_layer_norm = nn.LayerNorm(self.hidden_size)
self.decoder = TransformerSeq2SeqDecoder(tgt_embedding,
d_model=self.hidden_size,
pos_embed=None,
num_layers=6)
self.generator = SequenceGenerator(self.decoder, num_beams=1,
do_sample=False,
max_length=opt.max_seq_length,
bos_token_id=self.bos_index,
eos_token_id=self.eos_index)
self.criterion = nn.CrossEntropyLoss(ignore_index=self.pad_index)
def forward(self, words, target, flag):
#print(words)
#print(target)
#print(self.vocab_size)
encoder_output = self.encoder(words)[0]
encoder_output = self.ffn_layer_norm(encoder_output)
# print(select_binary.squeeze(-1))
#print(encoder_output.size())
encoder_mask = words.ne(self.pad_index)
state = self.decoder.init_state(encoder_output, encoder_mask)
output = self.decoder(target[:, :-1], state, flag[:, :-1, :])
batch_size, tgt_len, _ = output.size()
pred = output.reshape(batch_size * tgt_len, -1)
gold = target[:, 1:].contiguous().view(-1)
loss = self.criterion(pred, gold)
return {'loss': loss}
def generate(self, words, flag):
encoder_output = self.encoder(words)[0]
encoder_output = self.ffn_layer_norm(encoder_output)
encoder_mask = words.ne(self.pad_index)
state = self.decoder.init_state(encoder_output, encoder_mask)
pred = self.generator.generate(state, flag=flag)
batch_size, tgt_len = pred.size(0), pred.size(1)
hypothesis = []
for i in range(batch_size):
words = pred[i].tolist()
prediction = []
for word in words:
if word == self.bos_index:
continue
elif word == self.eos_index:
break
else:
prediction.append(word)
hypothesis.append(prediction)
return hypothesis
import random
import numpy as np
import torch
import torch.nn as nn
import argparse
from utils.config import Config
from dataset import FCDataset
from torch.utils.data import DataLoader
from tqdm import tqdm
from utils.util import get_optimizers, clip_gradients
from transformers.models.mbart.modeling_mbart import shift_tokens_right
import nltk
import os
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if 'cuda' in args.device:
torch.cuda.manual_seed_all(args.seed)
def parse_arguments(parser: argparse.ArgumentParser):
# data Hyperparameters
parser.add_argument('--device', type=str, default="cuda:0", choices=['cpu', 'cuda:0', 'cuda:1', 'cuda:2'],
help="GPU/CPU devices")
parser.add_argument('--batch_size', type=int, default=32, help="default batch size is 10 (works well)")
parser.add_argument('--max_seq_length', type=int, default=100, help="maximum sequence length")
parser.add_argument('--generated_max_length', type=int, default=150, help="maximum target length")
parser.add_argument('--max_candidate_length', type=int, default=20, help="maximum number of candidate tokens")
parser.add_argument('--train_num', type=int, default=-1, help="The number of training data, -1 means all data")
parser.add_argument('--dev_num', type=int, default=-1, help="The number of development data, -1 means all data")
parser.add_argument('--test_num', type=int, default=-1, help="The number of development data, -1 means all data")
parser.add_argument('--train_file', type=str, default="data/train.json")
parser.add_argument('--dev_file', type=str, default="data/dev.json")
parser.add_argument('--test_file', type=str, default="data/test.json")
parser.add_argument('--gpus', type=bool, default=True)
parser.add_argument('--seed', type=int, default=42, help="random seed")
# model
parser.add_argument('--model_folder', type=str, default="mbart_generate_answer",
help="the name of the models, to save the model")
parser.add_argument('--bert_folder', type=str, default="",
help="The folder name that contains the BERT model")
parser.add_argument('--bert_model_name', type=str, default="mbart-large-cc25", help="The bert model name to used")
# training
parser.add_argument('--mode', type=str, default="train", help="training or testing")
parser.add_argument('--learning_rate', type=float, default=2e-5, help="learning rate of the AdamW optimizer")
parser.add_argument('--max_grad_norm', type=float, default=1.0, help="The maximum gradient norm")
parser.add_argument('--num_epochs', type=int, default=50, help="The number of epochs to run")
parser.add_argument('--early_stop', type=int, default=8, help="The number of epochs to early stop")
parser.add_argument('--task', type=str, default="bert2tf")
parser.add_argument('--fp16', type=int, default=0, choices=[0, 1], help="fp16")
args = parser.parse_args()
# Print out the arguments
for k in args.__dict__:
print(k + ": " + str(args.__dict__[k]))
return args
def train(config: Config, train_dataloader: DataLoader, num_epochs: int, early_stop: int,
bert_model_name: str, dev: torch.device, valid_dataloader: DataLoader = None, tokenizer=None):
metric = None
#metric = load_metric("bleu")
gradient_accumulation_steps = 1
t_total = int(len(train_dataloader) // gradient_accumulation_steps * num_epochs)
model = Bert2tf(config, tokenizer)
model.to(dev)
device_ids = [0,1,2,3]
if config.gpus:
model = nn.DataParallel(model, device_ids=device_ids, output_device=0)
if config.fp16:
scaler = torch.cuda.amp.GradScaler(enabled=bool(config.fp16))
optimizer, scheduler = get_optimizers(config, model, t_total, warmup_step=0, eps=1e-8, weight_decay=0.0)
#optimizer = nn.DataParallel(optimizer, device_ids=device_ids)
optimizer.zero_grad()
model.zero_grad()
best_accuracy = -1
os.makedirs(f"model_files/{config.model_folder}", exist_ok=True) ## create model files. not raise error if exist
stop_num = 0
for epoch in range(num_epochs):
total_loss = 0
model.train()
for iter, batch in tqdm(enumerate(train_dataloader, 1), desc="--training batch", total=len(train_dataloader)):
target_id = batch.question_ids.to(dev)
#print(target_id.size())
lm_labels = target_id.clone()
lm_labels[target_id == 0] = -100
input_ids = batch.input_ids.to(dev)
flag = batch.flag.to(dev)
decoder_input_ids = shift_tokens_right(target_id, 0)
#mask = batch.attention_mask.to(dev)
#decoder_input_ids = shift_tokens_right(target_id, tokenizer.pad_token_id)
with torch.cuda.amp.autocast(enabled=bool(config.fp16)):
outputs = model(input_ids, decoder_input_ids, flag)
loss = outputs['loss']
loss = torch.sum(loss)
if config.fp16:
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
else:
loss.backward()
clip_gradients(model, config.max_grad_norm, dev)
total_loss += loss.item()
if config.fp16:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
optimizer.zero_grad()
scheduler.step()
model.zero_grad()
if iter % 1000 == 0:
print(f"epoch: {epoch}, iteration: {iter}, current mean loss: {total_loss / iter:.2f}", flush=True)
torch.cuda.empty_cache()
print(f"Finish epoch: {epoch}, loss: {total_loss:.2f}, mean loss: {total_loss / len(train_dataloader):.2f}",
flush=True)
if valid_dataloader is not None:
model.eval()
accuracy = test(config=config, valid_dataloader=valid_dataloader, model=model, dev=dev, tokenizer=tokenizer)
print(f"The dev bleu is: {accuracy}")
if accuracy > best_accuracy:
print(f"[Model Info] Saving the best model...")
stop_num = 0
torch.save(model.state_dict(), 'model.pth')
best_accuracy = accuracy
print(f"The best bleu is: {best_accuracy}, the early_stop_num is: {stop_num}")
else:
stop_num += 1
print(f"The best bleu is: {best_accuracy}, the early_stop_num is: {stop_num}")
if stop_num == early_stop:
print("Early Stop!")
break
print(f"[Model Info] Returning the best model")
modeldict = torch.load('model.pth')
model.load_state_dict(modeldict)
return model
def test(config: Config, valid_dataloader: DataLoader, model: nn.Module, dev: torch.device,
tokenizer):
model.eval()
predictions_text = []
targets_text = []
predictions = []
targets = []
with torch.no_grad(), torch.cuda.amp.autocast(enabled=False):
for index, batch in tqdm(enumerate(valid_dataloader), desc="--validation", total=len(valid_dataloader)):
generated_ids = model.module.generate(batch.input_ids.to(dev), batch.flag.to(dev))
'''
target_id = batch.label_id.to(dev)
lm_labels = target_id.clone()
mask = batch.attention_mask.to(dev)
lm_labels[target_id == tokenizer.pad_token_id] = -100
decoder_input_ids = shift_tokens_right(target_id, tokenizer.pad_token_id)
print(generated_ids.size(), mask.size(), decoder_input_ids.size(), lm_labels.size())
loss = model(generated_ids, attention_mask=mask, labels=lm_labels)
eval_loss += loss.item()
'''
preds = [
tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True).strip()
for g in generated_ids
]
predictions_text.extend(preds)
target = [tokenizer.decode(t[1:-1], skip_special_tokens=True, clean_up_tokenization_spaces=True).strip() for t in
batch.question_ids]
targets_text.extend(target)
print("####PREDICTIIONS####")
print(predictions_text[:20])
print("####TARGETS####")
print(targets_text[:20])
preds = []
golds = []
m_score = 0.0
rouge_score = 0.0
rouge = Rouge()
num = 0
for pred, gold in zip(predictions_text, targets_text):
#pred = tokenizer.tokenize(pred)
#gold = tokenizer.tokenize(gold)
#print(rouge.get_scores([pred], [gold]))
rouge_score += rouge.get_scores([pred], [gold])[0]['rouge-l']['f']
pred = nltk.word_tokenize(pred)
gold = nltk.word_tokenize(gold)
preds.append(pred)
golds.append([gold])
num += 1
#print(gold)
m_score += nltk.translate.meteor_score.meteor_score([gold], pred)
BLEUscore = nltk.translate.bleu_score.corpus_bleu(golds, preds)
'''
print(nltk.translate.bleu_score.corpus_bleu(golds, preds, weights=(1,0,0,0)))
print(nltk.translate.bleu_score.corpus_bleu(golds, preds, weights=(0.5,0.5,0,0)))
print(nltk.translate.bleu_score.corpus_bleu(golds, preds, weights=(0.33,0.33,0.33,0)))
print(nltk.translate.bleu_score.corpus_bleu(golds, preds, weights=(0.25,0.25,0.25,1)))
print(m_score / num)
print(rouge_score / num)
#print(nltk.translate.meteor_score.meteor_score(golds[0], preds))
'''
file_data = []
new_data = []
for pred, gold in zip(predictions_text, targets_text):
dict1 = {'pred': pred, 'gold': gold}
pred1 = tokenizer.tokenize(pred)
gold = tokenizer.tokenize(gold)
s = nltk.translate.bleu_score.sentence_bleu([gold], pred1)
file_data.append((pred, s))
new_data.append(dict1)
data_str = json.dumps(new_data, indent=4, ensure_ascii=False)
with open("case.json", 'w') as f:
f.write(data_str)
#print(len(file_data))
'''
with open("pred/bert2tf.txt", "w") as f:
for line in file_data:
f.write(line[0] + "\n")
'''
'''
file_data = []
for pred, gold in zip(predictions_text, targets_text):
pred1 = tokenizer.tokenize(pred)
gold = tokenizer.tokenize(gold)
s = nltk.translate.bleu_score.sentence_bleu([gold], pred1)
file_data.append((pred, s))
with open("pred.txt", "w") as f:
for line in file_data:
f.write(line[0] + "\n")
with open("bleu.txt", "w") as f:
for line in file_data:
f.write(str(line[1]) + "\n")
'''
print(BLEUscore)
return BLEUscore
def main():
parser = argparse.ArgumentParser(description="Cloze Test question answering")
opt = parse_arguments(parser)
set_seed(opt)
conf = Config(opt)
if conf.bert_folder != "":
bert_model_name = f'{conf.bert_folder}/{conf.bert_model_name}'
else:
bert_model_name = conf.bert_model_name
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# Read dataset
print("[Data Info] Reading training data", flush=True)
dataset = FCDataset(tokenizer=tokenizer, file=conf.train_file, max_question_len=conf.max_seq_length,
max_answer_length=conf.generated_max_length, pretrain_model_name=bert_model_name,
number=conf.train_num, is_training=True)
print("[Data Info] Reading validation data", flush=True)
eval_dataset = FCDataset(tokenizer=tokenizer, file=conf.dev_file, max_question_len=conf.max_seq_length,
max_answer_length=conf.generated_max_length, pretrain_model_name=bert_model_name,
number=conf.dev_num)
test_dataset = FCDataset(tokenizer=tokenizer, file=conf.test_file, max_question_len=conf.max_seq_length,
max_answer_length=conf.generated_max_length, pretrain_model_name=bert_model_name,
number=conf.test_num)
# Prepare data loader
if opt.mode == "train":
print("[Data Info] Loading training data", flush=True)
train_dataloader = DataLoader(dataset, batch_size=conf.batch_size, shuffle=True,
num_workers=conf.num_workers,
collate_fn=dataset.collate_fn)
print("[Data Info] Loading validation data", flush=True)
valid_dataloader = DataLoader(eval_dataset, batch_size=conf.batch_size, shuffle=False,
num_workers=conf.num_workers,
collate_fn=eval_dataset.collate_fn)
print("[Data Info] Loading test data", flush=True)
test_dataloader = DataLoader(test_dataset, batch_size=conf.batch_size, shuffle=False,
num_workers=conf.num_workers,
collate_fn=eval_dataset.collate_fn)
# Train the model
model = train(conf, train_dataloader,
num_epochs=conf.num_epochs,
early_stop=conf.early_stop,
bert_model_name=bert_model_name,
valid_dataloader=valid_dataloader,
dev=conf.device,
tokenizer=tokenizer)
device_ids = [0,1,2,3]
if conf.gpus:
model = nn.DataParallel(model, device_ids=device_ids, output_device=0)
BLEU_score = test(conf, test_dataloader, model, conf.device, tokenizer)
print(f"The test bleu is: {BLEU_score}")
elif opt.mode == "test":
print("[Data Info] Loading validation data", flush=True)
valid_dataloader = DataLoader(test_dataset, batch_size=conf.batch_size, shuffle=False,
num_workers=conf.num_workers,
collate_fn=eval_dataset.collate_fn)
print("[Model Info] Loading the saved model", flush=True)
model = Bert2tf(conf, tokenizer)
if conf.gpus:
device_ids = [0, 1, 2, 3]
model = nn.DataParallel(model, device_ids=device_ids, output_device=0)
modeldict = torch.load(f'model.pth')
model.load_state_dict(modeldict)
model.to(conf.device)
test(conf, valid_dataloader, model, conf.device, tokenizer)
if __name__ == "__main__":
main()