-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpair_motion.cpp
5446 lines (4715 loc) · 261 KB
/
pair_motion.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "stdafx.h"
#include "pair_motion.h"
Pair_Motion::Pair_Motion(int * search_sizes, int * block_sizes)
{
//These are the search sizes and block sizes for the entire hierarchy of images
level4_search_size = search_sizes[3];
level4_block_size = block_sizes[3];
level3_search_size = search_sizes[2];
level3_block_size = block_sizes[2];
level2_search_size = search_sizes[1];
level2_block_size = block_sizes[1];
level1_search_size = search_sizes[0];
level1_block_size = block_sizes[0];
start_pos_level4 = (level4_search_size >> 1) - (level4_block_size >> 1);
start_pos_level3 = (start_pos_level4 << 1); //(level3_search_size >> 1) - (level3_block_size >> 1);
start_pos_level2 = (start_pos_level3 << 1);
start_pos_level1 = (start_pos_level2 << 1);
//Shifting block inside search window -- needed to prevent exceeding width/height
v_shift1 = level1_search_size - level1_block_size;
v_shift2 = level2_search_size - level2_block_size;
v_shift3 = level3_search_size - level3_block_size;
v_shift4 = level4_search_size - level4_block_size;
}
void Pair_Motion::pad_images(IplImage*& imageA, IplImage*& imageB, IplImage*& imageA_pad, IplImage*& imageB_pad, int start_pos)
{
//add_height = (block_size - (image1->height - (int)floor(double(image1->height)/block_size)*block_size)) % block_size + ((start_pos << 1) - block_size);
//add_width = (block_size - (image1->width - (int)floor(double(image1->width)/block_size)*block_size)) % block_size + ((start_pos << 1) - block_size);
//std::cout << "add Height is " << add_height << std::endl;
//std::cout << "add Width is " << add_width << std::endl;
imageA_pad = cvCreateImage(cvSize(imageA->width + add_width, imageA->height + add_height), IPL_DEPTH_8U, 1);
imageB_pad = cvCreateImage(cvSize(imageB->width + add_width, imageB->height + add_height), IPL_DEPTH_8U, 1);
cvZero(imageA_pad);
cvZero(imageB_pad);
for(int i = start_pos; i < (imageA->height+start_pos); i++)
{
for(int j = start_pos; j < (imageA->width+start_pos); j++)
{
imageA_pad->imageData[i*imageA_pad->widthStep+j] = imageA->imageData[(i-start_pos)*imageA->widthStep+(j-start_pos)];
//image1_pad->imageData[i*image1_pad->widthStep+j*3+1] = image1->imageData[(i-start_pos)*image1->widthStep+(j-start_pos)*3+1];
//image1_pad->imageData[i*image1_pad->widthStep+j*3+2] = image1->imageData[(i-start_pos)*image1->widthStep+(j-start_pos)*3+2];
imageB_pad->imageData[i*imageB_pad->widthStep+j] = imageB->imageData[(i-start_pos)*imageB->widthStep+(j-start_pos)];
//image2_pad->imageData[i*image2_pad->widthStep+j*3+1] = image2->imageData[(i-start_pos)*image2->widthStep+(j-start_pos)*3+1];
//image2_pad->imageData[i*image2_pad->widthStep+j*3+2] = image2->imageData[(i-start_pos)*image2->widthStep+(j-start_pos)*3+2];
}
}
}
void Pair_Motion::pad_image_color(IplImage*& imageA, IplImage*& imageA_pad, int start_pos)
{
imageA_pad = cvCreateImage(cvSize(imageA->width + add_width, imageA->height + add_height), IPL_DEPTH_8U, 3);
cvZero(imageA_pad);
for(int i = start_pos; i < (imageA->height+start_pos); i++)
{
for(int j = start_pos; j < (imageA->width+start_pos); j++)
{
imageA_pad->imageData[i*imageA_pad->widthStep+j*3] = imageA->imageData[(i-start_pos)*imageA->widthStep+(j-start_pos)*3];
imageA_pad->imageData[i*imageA_pad->widthStep+j*3+1] = imageA->imageData[(i-start_pos)*imageA->widthStep+(j-start_pos)*3+1];
imageA_pad->imageData[i*imageA_pad->widthStep+j*3+2] = imageA->imageData[(i-start_pos)*imageA->widthStep+(j-start_pos)*3+2];
}
}
}
void Pair_Motion::start_calculation_nointerp(IplImage*& image1, IplImage*& image2, int lambda_value)
{
// Load input images
Computed_Data.frame1 = image1;//cvCloneImage(image1);
frame2 = image2;//cvCloneImage(image2);
level1a = Computed_Data.frame1;
level1b = frame2;
//Convert color images to grayscale if necessary (Level1a)
if (level1a->nChannels == 3)
{
level1a_grey = cvCreateImage(cvGetSize(level1a), IPL_DEPTH_8U, 1);
// Convert to grayscale image
cvCvtColor(level1a, level1a_grey, CV_RGB2GRAY);
}
else
{
//Means we already have a grayscale image
level1a_grey = cvCreateImage(cvGetSize(level1a), IPL_DEPTH_8U, 1);
cvCopyImage(level1a, level1a_grey);
}
//Convert color images to grayscale if necessary (Level1a)
if (level1b->nChannels == 3)
{
level1b_grey = cvCreateImage(cvGetSize(level1b), IPL_DEPTH_8U, 1);
// Convert to grayscale image
cvCvtColor(level1b, level1b_grey, CV_RGB2GRAY);
}
else
{
//Means we already have a grayscale image
level1b_grey = cvCreateImage(cvGetSize(level1b), IPL_DEPTH_8U, 1);
cvCopyImage(level1b, level1b_grey);
}
//Level 2 Downsampling
level2a_grey = cvCreateImage(cvSize(level1a_grey->width/2,level1a_grey->height/2), IPL_DEPTH_8U, 1);
level2b_grey = cvCreateImage(cvSize(level1a_grey->width/2,level1a_grey->height/2), IPL_DEPTH_8U, 1);
cvPyrDown(level1a_grey, level2a_grey);
cvPyrDown(level1b_grey, level2b_grey);
//Level 3 Downsampling
level3a_grey = cvCreateImage(cvSize(level2a_grey->width/2,level2a_grey->height/2), IPL_DEPTH_8U, 1);
level3b_grey = cvCreateImage(cvSize(level2b_grey->width/2,level2b_grey->height/2), IPL_DEPTH_8U, 1);
cvPyrDown(level2a_grey, level3a_grey);
cvPyrDown(level2b_grey, level3b_grey);
//Level 4 Downsampling
level4a_grey = cvCreateImage(cvSize(level3a_grey->width/2,level3a_grey->height/2), IPL_DEPTH_8U, 1);
level4b_grey = cvCreateImage(cvSize(level3b_grey->width/2,level3b_grey->height/2), IPL_DEPTH_8U, 1);
cvPyrDown(level3a_grey, level4a_grey);
cvPyrDown(level3b_grey, level4b_grey);
//Pad Images
//Level 4
add_height = (level4a_grey->height - (int)floor(double(level4a_grey->height)/level4_block_size)*level4_block_size) % level4_block_size + ((start_pos_level4 << 1));
add_width = (level4a_grey->width - (int)floor(double(level4a_grey->width)/level4_block_size)*level4_block_size) % level4_block_size + ((start_pos_level4 << 1));
add_height4 = add_height;
add_width4 = add_width;
pad_images(level4a_grey, level4b_grey, level4a_pad, level4b_pad, start_pos_level4);
//Don't need the original images anymore, so let's delete them
cvReleaseImage(&level4a_grey);
cvReleaseImage(&level4b_grey);
//Assign data to padded images
data_level4a = (uchar *)level4a_pad->imageData;
data_level4b = (uchar *)level4b_pad->imageData;
height4 = level4a_pad->height;
width4 = level4a_pad->width;
step4 = level4a_pad->widthStep;
//Level 3
add_height = (add_height << 1);
add_width = (add_width << 1);
add_height3 = add_height;
add_width3 = add_width;
pad_images(level3a_grey, level3b_grey, level3a_pad, level3b_pad, start_pos_level3);
//Don't need the original images anymore, so let's delete them
cvReleaseImage(&level3a_grey);
cvReleaseImage(&level3b_grey);
//Assign data to padded images
data_level3a = (uchar *)level3a_pad->imageData;
data_level3b = (uchar *)level3b_pad->imageData;
height3 = level3a_pad->height;
width3 = level3a_pad->width;
step3 = level3a_pad->widthStep;
//Level 2
add_height = (add_height << 1);
add_width = (add_width << 1);
add_height2 = add_height;
add_width2 = add_width;
pad_images(level2a_grey, level2b_grey, level2a_pad, level2b_pad, start_pos_level2);
//Don't need the original images anymore, so let's delete them
cvReleaseImage(&level2a_grey);
cvReleaseImage(&level2b_grey);
//Assign data to padded images
data_level2a = (uchar *)level2a_pad->imageData;
data_level2b = (uchar *)level2b_pad->imageData;
height2 = level2a_pad->height;
width2 = level2a_pad->width;
step2 = level2a_pad->widthStep;
//Level 1
add_height = (add_height << 1);
add_width = (add_width << 1);
add_height1 = add_height;
add_width1 = add_width;
pad_images(level1a_grey, level1b_grey, level1a_pad, level1b_pad, start_pos_level1);
//The next line is for the motion compensated frame, data_color1 below
if (level1a->nChannels == 3)
{
pad_image_color(level1b, level1b_pad_color, start_pos_level1);
pad_image_color(level1a, level1a_pad_color, start_pos_level1);
//cvSaveImage("./stereo/level1bpad.png", level1b_pad_color);
//cvSaveImage("./stereo/level1apad.png", level1a_pad_color);
}
width1 = level1a_pad->width;
height1 = level1a_pad->height;
step1 = level1a_pad->widthStep;
data_level1a = (uchar *)level1a_pad->imageData;
data_level1b = (uchar *)level1b_pad->imageData;
//For displaying the motion vectors of the two frames
if (level1a->nChannels == 3)
{
debug = cvCloneImage(level1a_pad_color); //was level1b
//debug2 = cvCloneImage(level1b_pad);
}
else
debug = cvCloneImage(level1a_pad);
//For the predicted image (assuming highest level here)
if (level1a->nChannels == 3)
{
frame_predict = cvCreateImage(cvSize(level1a_grey->width, level1a_grey->height), IPL_DEPTH_8U, 3);
data_color1 = (uchar *)level1a_pad_color->imageData;
color_step = level1a_pad_color->widthStep;
}
else
{
frame_predict = cvCreateImage(cvSize(level1a_grey->width, level1a_grey->height), IPL_DEPTH_8U, 1);
data_color1 = (uchar *)level1a_pad->imageData;
color_step = level1a_pad->widthStep;
}
data_predict = (uchar *)frame_predict->imageData;
predict_step = frame_predict->widthStep;
//Delete level1 greyscale images that we don't need
cvReleaseImage(&level1a_grey);
cvReleaseImage(&level1b_grey);
// This is where we allocate our dynamic arrays used to calculate motion positions and motion vectors
Computed_Data.v_x1 = new int[height1*width1];//step1];
Computed_Data.v_y1 = new int[height1*width1];//step1];
Computed_Data.reliability = new double[height1*width1];//step1];
overlap1 = new int[height1*width1];
overlap2 = new int[height2*width2];
overlap3 = new int[height3*width3];
overlap4 = new int[height4*width4];
v_x2 = new int[height2*width2];
v_y2 = new int[height2*width2];
v_x3 = new int[height3*width3];
v_y3 = new int[height3*width3];
v_x4 = new int[height4*width4];
v_y4 = new int[height4*width4];
//Initialize all values to zero for Level 1
for(int i = 0; i < height1*width1; i++)
{
Computed_Data.v_x1[i] = 0;
Computed_Data.v_y1[i] = 0;
Computed_Data.reliability[i] = 0;
overlap1[i] = 0;
}
//Initialize all values to zero for level2
for(int i = 0; i < height2*width2; i++)
{
v_x2[i] = 0;
v_y2[i] = 0;
overlap2[i] = 0;
}
//Initialize all values to zero for level3
for(int i = 0; i < height3*width3; i++)
{
v_x3[i] = 0;
v_y3[i] = 0;
overlap3[i] = 0;
}
//Initialize all values to zero for level4
for(int i = 0; i < height4*width4; i++)
{
v_x4[i] = 0;
v_y4[i] = 0;
overlap4[i] = 0;
}
calculate_motion_vectors_overlap(lambda_value);
}
void Pair_Motion::calculate_motion_vectors_overlap(int lambda_value)
{
//Applies to all levels
int temp_lambda;
//--------------------Level 4----------------------------
//Initializations for Level 4
level = 4;
width = width4;
height = height4;
add_height = add_height4;
add_width = add_width4;
step = step4;
search_size = level4_search_size;
b_size = level4_block_size;
start_pos = start_pos_level4;
v_shift = v_shift4;
data_a = data_level4a;
data_b = data_level4b;
v_x = v_x4;
v_y = v_y4;
Computed_Data.overlap = overlap4;
//End of initializations
//onelevlspiral_BM_minoverlap();
onelevlspiral_BM();
for(int k = 0; k < 3; k++) //change back to 3
{
b_size = level4_block_size;
temp_lambda = (level4_block_size*3) >> 2;
while (b_size > 1)
{
for (int l = 0; l < 4; l++) //change back to 4
{
calculate_pixel_reliability();
add_smoothness8_overlap((l+1)*temp_lambda);
//add_smoothness8_old((l+1)*temp_lambda);
}
setMVs_iter();
b_size = (b_size >> 1);
temp_lambda = temp_lambda >> 1;
}
}
b_size = (level3_block_size >> 1); // set to half of block size needed at next level
//-----------------End of Level 4------------------------
//--------------------Level 3----------------------------
//Initializations for Level 3
level = 3;
width_previous = width4;
width = width3;
height_previous = height4;
height = height3;
add_height = add_height3;
add_width = add_width3;
step = step3;
step_previous = step4;
search_size = level3_search_size;
b_size_previous = b_size;
b_size = level3_block_size;
start_pos_prev = start_pos_level4;
start_pos = start_pos_level3;
v_shift = v_shift3;
v_shift_previous = v_shift4;
data_a = data_level3a;
data_b = data_level3b;
v_xprev = v_x4;
v_yprev = v_y4;
v_x = v_x3;
v_y = v_y3;
Computed_Data.overlap = overlap3;
//End of initializations
nextlevlspiral_BM();
//nextlevlspiral_BM_minoverlap(1);
//nextlevlspiral_BM_weightedoverlap(-1);
for(int k = 0; k < 3; k++) //change back to 3
{
b_size = level3_block_size;
temp_lambda = (level3_block_size*3) >> 2;
while (b_size > 1)
{
for (int l = 0; l < 4; l++) //change back to 4
{
calculate_pixel_reliability();
add_smoothness8_overlap((l+1)*temp_lambda);
//add_smoothness8_old((l+1)*temp_lambda);
}
setMVs_iter();
b_size = (b_size >> 1);
temp_lambda = temp_lambda >> 1;
}
}
b_size = (level2_block_size >> 1); // set to half of block size needed at next level
//-----------------End of Level 3------------------------
//---------------------Level 2---------------------------
//Initializations for Level 2
level = 2;
width_previous = width3;
width = width2;
height_previous = height3;
height = height2;
add_height = add_height2;
add_width = add_width2;
step = step2;
step_previous = step3;
search_size = level2_search_size;
b_size_previous = b_size;
b_size = level2_block_size;
start_pos_prev = start_pos_level3;
start_pos = start_pos_level2;
v_shift = v_shift2;
v_shift_previous = v_shift3;
data_a = data_level2a;
data_b = data_level2b;
v_xprev = v_x3;
v_yprev = v_y3;
v_x = v_x2;
v_y = v_y2;
Computed_Data.overlap = overlap2;
//End of initializations
nextlevlspiral_BM();
//nextlevlspiral_BM_minoverlap(1);
//nextlevlspiral_BM_weightedoverlap(1);
for(int k = 0; k < 3; k++) //change back to 3
{
b_size = level2_block_size;
temp_lambda = (level2_block_size*3) >> 2;
while (b_size > 1)
{
for (int l = 0; l < 4; l++) //change back to 4
{
calculate_pixel_reliability();
add_smoothness8_overlap((l+1)*temp_lambda);
//add_smoothness8_old((l+1)*temp_lambda);
}
setMVs_iter();
b_size = (b_size >> 1);
temp_lambda = temp_lambda >> 1;
}
}
b_size = (level1_block_size >> 1); //set to half of the block size needed at next level
//-----------------End of Level 2------------------------
//---------------------Level 1---------------------------
//Initializations for Level 1
level = 1;
width_previous = width2;
width = width1;
height_previous = height2;
height = height1;
add_height = add_height1;
add_width = add_width1;
step = step1;
step_previous = step2;
search_size = level1_search_size;
b_size_previous = b_size;
b_size = level1_block_size;
//start_pos no change at first
v_shift = v_shift1;
v_shift_previous = v_shift2;
data_a = data_level1a;
data_b = data_level1b;
v_xprev = v_x2;
v_yprev = v_y2;
v_x = Computed_Data.v_x1;
v_y = Computed_Data.v_y1;
Computed_Data.overlap = overlap1;
//End of initializations
start_pos_prev = start_pos_level2;
start_pos = start_pos_level1;
//End of initializations
nextlevlspiral_BM();
//nextlevlspiral_BM_minoverlap(1);
//nextlevlspiral_BM_weightedoverlap(-1);
for(int k = 0; k < 3; k++) //change back to 3
{
b_size = level1_block_size;
temp_lambda = (level1_block_size*3) >> 2;
while(b_size > 1)
{
for (int l = 0; l < 4; l++) //change back to 4
{
calculate_pixel_reliability();
add_smoothness8_overlap((l+1)*temp_lambda);
//add_smoothness8_old((l+1)*temp_lambda);
}
setMVs_iter();
b_size = (b_size >> 1);
temp_lambda = temp_lambda >> 1;
}
}
//validity_for_SR();
//-----------------End of Level 1------------------------
}
void Pair_Motion::calculate_reliability()
{
int mod_factor = b_size - 1;
int div_factor = int(log10((double)b_size)/log10(2.0));
//clear overlap and reliability
for(int i = 0; i < height1; i++)
{
for (int j = 0; j < width1; j++)
{
Computed_Data.reliability[i*step1+j] = 0;
Computed_Data.overlap[i*step1+j] = 0;
}
}
calculate_block_overlap();
double max_value = find_overlap_max(); //(4*b_size*b_size) / (b_size*b_size + 4);
double tl_overlap, bl_overlap, tr_overlap, br_overlap, total_overlap;
int vx_pos, vy_pos, top_left, top_right, bottom_left, bottom_right;
for (int i = start_pos; i < height - (add_height - start_pos); i+=b_size)//+) //goes through all vertical motion positions
{
for (int j = start_pos; j < width - (add_width - start_pos); j+=b_size)//+) //goes through all horizontal motion positions
{
vx_pos = v_x[i*step+j] + j;
vy_pos = v_y[i*step+j] + i;
calculate_singleMV_overlap(b_size, vy_pos, vx_pos, top_left, top_right, bottom_left, bottom_right);
if (top_left == 0) //this shouldnt happen though -- safety check
tl_overlap = 0;
else
tl_overlap = (double)(top_left % Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+((vx_pos >> div_factor) << div_factor)]) / (Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+((vx_pos >> div_factor) << div_factor)]);
if(bottom_left == 0)
bl_overlap = 0;
else
bl_overlap = (double) (bottom_left % Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor) + b_size)*step+((vx_pos >> div_factor) << div_factor)]) / (Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor) + b_size)*step+((vx_pos >> div_factor) << div_factor)]);
if(top_right == 0)
tr_overlap = 0;
else
tr_overlap = (double) (top_right % Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+(((vx_pos >> div_factor) << div_factor)+b_size)]) / (Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+(((vx_pos >> div_factor) << div_factor)+b_size)]);
if(bottom_right == 0)
br_overlap = 0;
else
br_overlap = (double) (bottom_right % Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor)+b_size)*step+(((vx_pos >> div_factor) << div_factor)+b_size)]) / (Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor)+b_size)*step+(((vx_pos >> div_factor) << div_factor)+b_size)]);
total_overlap = tl_overlap + bl_overlap + tr_overlap + br_overlap;
// total_overlap = (double)(top_left % Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+((vx_pos >> div_factor) << div_factor)]) / (Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+((vx_pos >> div_factor) << div_factor)])
// + (double) (bottom_left % Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor) + b_size)*step+((vx_pos >> div_factor) << div_factor)]) / (Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor) + b_size)*step+((vx_pos >> div_factor) << div_factor)])
// + (double) (top_right % Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+(((vx_pos >> div_factor) << div_factor)+b_size)]) / (Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+(((vx_pos >> div_factor) << div_factor)+b_size)])
// + (double) (bottom_right % Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor)+b_size)*step+(((vx_pos >> div_factor) << div_factor)+b_size)]) / (Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor)+b_size)*step+(((vx_pos >> div_factor) << div_factor)+b_size)]);
//total_overlap = (double) Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+((vx_pos >> div_factor) << div_factor)] / (top_left+1) + (double) Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor) + b_size)*step+((vx_pos >> div_factor) << div_factor)] / (bottom_left+1) + (double) Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+(((vx_pos >> div_factor) << div_factor)+b_size)] / (top_right+1) + (double) Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor)+b_size)*step+(((vx_pos >> div_factor) << div_factor)+b_size)] / (bottom_right+1);
Computed_Data.reliability[i*step+j] = (total_overlap / max_value); //this is not actually the reliability, but a penalty weighting.
}
}
//add_smoothness8_weighted(b_size << 1); //uses b_size = 2; this is only postfiltering the MV field with weights on neighbors.
}
void Pair_Motion::calculate_pixel_reliability()
{
//clear overlap and reliability
for(int i = 0; i < height; i++)
{
for (int j = 0; j < width; j++)
{
//Computed_Data.reliability[i*step+j] = 0;
Computed_Data.overlap[i*step+j] = 0;
}
}
//double mean;
calculate_pixel_overlap();
/*
int x_pos, y_pos;
double block_overlap;
int b_size_sq = 4;
double temp_SAD;
if (b_size == 1 && level == 1)
{
b_size = 2;
calculate_pixel_overlap();
b_size = 1;
for (int i = start_pos; i < height - (add_height - start_pos); i+=b_size)//+) //goes through all vertical motion positions
{
for (int j = start_pos; j < width - (add_width - start_pos); j+=b_size)//+) //goes through all horizontal motion positions
{
x_pos = v_x[i*step+j] + j;
y_pos = v_y[i*step+j] + i;
block_overlap = 0;
b_size = 2;
for(int k = y_pos; k < y_pos + b_size; k++)
{
for(int l = x_pos; l < x_pos + b_size; l++)
{
block_overlap += Computed_Data.overlap[k*step+l];
}
}
temp_SAD = (double)calculate_SAD(i, j, v_x[i*step+j] + j, v_y[i*step+j] + i);
//if(calculate_SAD(i, j, x_pos, y_pos) > (b_size*b_size*10))
//Computed_Data.reliability[i*step+j] = 1;
//else
//Computed_Data.reliability[i*step+j] = (b_size_sq / block_overlap);
Computed_Data.reliability[i*step+j] = b_size_sq/block_overlap;
b_size = 1;
//std::cout << Computed_Data.reliability[i*step+j] << std::endl;
}
}
b_size = 1;
}
//std::cout << "variance is " << variance << std::endl;
*/
}
void Pair_Motion::validity_for_SR()
{
b_size = 2;
double b_size_sq = b_size*b_size;
//clear overlap and reliability
for(int i = 0; i < height; i++)
{
for (int j = 0; j < width; j++)
{
Computed_Data.overlap[i*step+j] = 0;
}
}
calculate_pixel_overlap();
int x_pos, y_pos;
double block_overlap, temp_SAD;
for (int i = start_pos; i < height - (add_height - start_pos); i+=b_size) //goes through all vertical motion positions
{
for (int j = start_pos; j < width - (add_width - start_pos); j+=b_size) //goes through all horizontal motion positions
{
x_pos = v_x[i*step+j] + j;
y_pos = v_y[i*step+j] + i;
block_overlap = 0;
for(int k = y_pos; k < y_pos + b_size; k++)
{
for(int l = x_pos; l < x_pos + b_size; l++)
{
block_overlap += Computed_Data.overlap[k*step+l];
}
}
temp_SAD = (double)calculate_SAD(i, j, v_x[i*step+j] + j, v_y[i*step+j] + i);
/*if (temp_SAD > 25)//18) //8
{
for(int y = i; y < i + b_size; y++)
{
for(int z = j; z < j + b_size; z++)
{
Computed_Data.reliability[y*step+z] = 0;
}
}
}*/
//else
//{
for(int y = i; y < i + b_size; y++)
{
for(int z = j; z < j + b_size; z++)
{
Computed_Data.reliability[y*step+z] = b_size_sq/(block_overlap*(1+temp_SAD));
}
}
//}
}
}
b_size = 1;
}
void Pair_Motion::calculate_block_overlap()
{
int x_mod, y_mod, overlapx_opp, overlapy_opp, x_div, y_div;
int mod_factor = b_size - 1;
int div_factor = int(log10((double)b_size)/log10(2.0));
//12/1/11 -- changed to add_height - start_pos // was start_pos + b_size
for (int i = start_pos; i < height-(add_height - start_pos); i+=b_size)//+) //goes through all vertical motion positions
{
for (int j = start_pos; j < width-(add_width - start_pos); j+=b_size)//+) //goes through all horizontal motion positions
{
x_mod = (v_x[i*step+j] + j) & mod_factor; //note that the & onyly works because (v_x[i*step+j] + i) & 3 <=> (v_x[i*step+j] + i) % 4;
y_mod = (v_y[i*step+j] + i) & mod_factor; //x % 2 == x & 1, x % 4 == x & 3, x % 8 == x & 7
overlapy_opp = y_mod; //b_size - y_mod //NOTE: PRETTY SURE THIS ONLY WORKS FOR 2x2 blocks!!
overlapx_opp = x_mod; //b_size - x_mod
x_div = ((v_x[i*step+j] + j) >> div_factor) << div_factor; //the part in parentheses causes a truncation -- don't think I can simplify this statement further.
y_div = ((v_y[i*step+j] + i) >> div_factor) << div_factor;
//y_div = ((v_x[i*step+j] + i) >> div_factor);// << div_factor; //the part in parentheses causes a truncation -- don't think I can simplify this statement further.
//x_div = ((v_y[i*step+j] + j) >> div_factor);// << div_factor;
if(x_mod == 0 && y_mod == 0)
{
Computed_Data.overlap[y_div*step+x_div] += (b_size*b_size); //Total overlap = b_size + b_size
}
else if(x_mod != 0 && y_mod != 0) //overlap in four different blocks
{
Computed_Data.overlap[y_div*step+x_div] += (b_size - x_mod)*(b_size - y_mod); //was just x_mod + y_mod
Computed_Data.overlap[y_div*step+(x_div+b_size)] += overlapx_opp*(b_size - y_mod);
Computed_Data.overlap[(y_div+b_size)*step+x_div] += (b_size - x_mod)*overlapy_opp;
Computed_Data.overlap[(y_div+b_size)*step+(x_div+b_size)] += overlapx_opp*overlapy_opp;
}
else if(x_mod != 0) //overlap in x direction only
{
Computed_Data.overlap[y_div*step+x_div] += (b_size - x_mod)*b_size;
Computed_Data.overlap[y_div*step+(x_div+b_size)] += b_size*overlapx_opp;
}
else //overlapy in y direction only
{
Computed_Data.overlap[y_div*step+x_div] += (b_size - y_mod)*b_size;
Computed_Data.overlap[(y_div+b_size)*step+x_div] += b_size*overlapy_opp;
}
}
}
}
void Pair_Motion::calculate_pixel_overlap()
{
int x_pos, y_pos;
//double temp_SAD;
//for variance
//double n = 0;
//double M2 = 0;
//double delta;
//double variance;
//mean = 0;
for (int i = start_pos; i < height-(add_height - start_pos); i+=b_size)
{
for (int j = start_pos; j < width-(add_width - start_pos); j+=b_size)
{
x_pos = v_x[i*step+j] + j;
y_pos = v_y[i*step+j] + i;
/*temp_SAD = calculate_SAD(i, j, x_pos, y_pos);
//Let's figure out the variance of the SAD values
n = n + 1;
delta = temp_SAD - mean;
mean = mean + delta/n;
M2 = M2 + delta*(temp_SAD - mean); */
for(int k = y_pos; k < y_pos + b_size; k++)
{
for(int l = x_pos; l < x_pos + b_size; l++)
{
Computed_Data.overlap[k*step+l] += 1; //adding up all of the pixel overlaps
}
}
}
}
//variance = M2/n;
}
double Pair_Motion::find_overlap_max()
{
int vx_pos, vy_pos, top_left, top_right, bottom_left, bottom_right;
double tl_overlap, bl_overlap, tr_overlap, br_overlap, total_overlap;
int div_factor = int(log10((double)b_size)/log10(2.0));
double max_value = 0;
for (int i = start_pos; i < height - (add_height - start_pos); i+=b_size)//+) //goes through all vertical motion positions
{
for (int j = start_pos; j < width - (add_width - start_pos); j+=b_size)//+) //goes through all horizontal motion positions
{
vx_pos = v_x[i*step+j] + j;
vy_pos = v_y[i*step+j] + i;
calculate_singleMV_overlap(b_size, vy_pos, vx_pos, top_left, top_right, bottom_left, bottom_right);
//total_overlap = (double)((top_left + 1) % (Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+((vx_pos >> div_factor) << div_factor)] + 1)) / (Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+((vx_pos >> div_factor) << div_factor)] + 1)
// + (double) ((bottom_left + 1) % (Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor) + b_size)*step+((vx_pos >> div_factor) << div_factor)] + 1)) / (Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor) + b_size)*step+((vx_pos >> div_factor) << div_factor)]+1)
// + (double) ((top_right + 1) % (Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+(((vx_pos >> div_factor) << div_factor)+b_size)] + 1)) / (Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+(((vx_pos >> div_factor) << div_factor)+b_size)]+1)
// + (double) ((bottom_right + 1) % (Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor)+b_size)*step+(((vx_pos >> div_factor) << div_factor)+b_size)] + 1)) / (Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor)+b_size)*step+(((vx_pos >> div_factor) << div_factor)+b_size)]+1);
// (double) Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+((vx_pos >> div_factor) << div_factor)] / (top_left+1) + (double) Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor) + b_size)*step+((vx_pos >> div_factor) << div_factor)] / (bottom_left+1) + (double) Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+(((vx_pos >> div_factor) << div_factor)+b_size)] / (top_right+1) + (double) Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor)+b_size)*step+(((vx_pos >> div_factor) << div_factor)+b_size)] / (bottom_right+1);
calculate_singleMV_overlap(b_size, vy_pos, vx_pos, top_left, top_right, bottom_left, bottom_right);
if (top_left == 0) //this shouldnt happen though -- safety check
tl_overlap = 0;
else
tl_overlap = (double)(top_left % Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+((vx_pos >> div_factor) << div_factor)]) / (Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+((vx_pos >> div_factor) << div_factor)]);
if(bottom_left == 0)
bl_overlap = 0;
else
bl_overlap = (double) (bottom_left % Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor) + b_size)*step+((vx_pos >> div_factor) << div_factor)]) / (Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor) + b_size)*step+((vx_pos >> div_factor) << div_factor)]);
if(top_right == 0)
tr_overlap = 0;
else
tr_overlap = (double) (top_right % Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+(((vx_pos >> div_factor) << div_factor)+b_size)]) / (Computed_Data.overlap[((vy_pos >> div_factor) << div_factor)*step+(((vx_pos >> div_factor) << div_factor)+b_size)]);
if(bottom_right == 0)
br_overlap = 0;
else
br_overlap = (double) (bottom_right % Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor)+b_size)*step+(((vx_pos >> div_factor) << div_factor)+b_size)]) / (Computed_Data.overlap[(((vy_pos >> div_factor) << div_factor)+b_size)*step+(((vx_pos >> div_factor) << div_factor)+b_size)]);
total_overlap = tl_overlap + bl_overlap + tr_overlap + br_overlap;
if (total_overlap > max_value)
max_value = total_overlap;
}
}
return max_value;
}
int Pair_Motion::get_overlap_volume(int x_pos, int y_pos)
{
int volume = 0;
for(int k = y_pos; k < y_pos + b_size; k++)
{
for(int l = x_pos; l < x_pos + b_size; l++)
{
volume += Computed_Data.overlap[k*step+l];
}
}
return volume;
}
void Pair_Motion::calculate_singleMV_overlap(int b_size, int pos_y, int pos_x, int& top_left, int& top_right, int& bottom_left, int& bottom_right)
{
int x_mod, y_mod, overlapx_opp, overlapy_opp;
int mod_factor = b_size - 1;
x_mod = (pos_x) & mod_factor; //note that the & onyly works because (v_x[i*step+j] + i) & 3 <=> (v_x[i*step+j] + i) % 4;
y_mod = (pos_y) & mod_factor; //x % 2 == x & 1, x % 4 == x & 3, x % 8 == x & 7
overlapy_opp = y_mod; //b_size - y_mod //NOTE: PRETTY SURE THIS ONLY WORKS FOR 2x2 blocks!!
overlapx_opp = x_mod; //b_size - x_mod
if(x_mod == 0 && y_mod == 0)
{
top_left = (b_size*b_size); //Total overlap = b_size + b_size
top_right = 0;
bottom_left = 0;
bottom_right = 0;
}
else if(x_mod != 0 && y_mod != 0) //overlap in four different blocks
{
top_left = (b_size - x_mod)*(b_size - y_mod);
top_right = overlapx_opp*(b_size - y_mod);
bottom_left = (b_size - x_mod)*overlapy_opp;
bottom_right = overlapx_opp*overlapy_opp;
}
else if(x_mod != 0) //overlap in x direction only
{
top_left = (b_size - x_mod)*b_size;
top_right = b_size*overlapx_opp;
bottom_left = 0;
bottom_right = 0;
}
else //overlapy in y direction only
{
top_left = (b_size - y_mod)*b_size;
top_right = 0;
bottom_left = b_size*overlapy_opp;
bottom_right = 0;
}
}
void Pair_Motion::onelevl_BM()
{
int SAD_value, min_SAD_value;
int motion_pos_x[1], motion_pos_y[1];
int i,j,m,n,l,k; //x,y;
//Reduce computations
//int b_size_div = b_size >> 1;
//int search_size_div = search_size >> 1;
//Shifting block inside search window
//int v_shift;
//v_shift = search_size - b_size; //this is if we shift by blocksize/2
//These first two loops are for each pixel in the image. For the meantime, we start at search_size/2 and ignore edges
for (i = start_pos; i <= height-(start_pos+b_size/*+v_shift*/); i+=b_size)//+) //goes through all vertical pixels
{
for (j = start_pos; j <= width-(start_pos+b_size/*+v_shift*/); j+=b_size)//+) //goes through all horizontal pizels
{
l = (j - start_pos); //only correct because first level -- should be vshift/2
k = (i - start_pos);
SAD_value = calculate_SAD(i,j,l,k);
//Initializations of SAD value
min_SAD_value = SAD_value;
motion_pos_x[0] = l;
motion_pos_y[0] = k;
for (n = 0; n <= v_shift; n++) //n controls the vertical shift
{
for (m = 0; m <= v_shift; m++) //m controls the horizontal shift
{
SAD_value = calculate_SAD(i,j,l,k);
if (SAD_value < min_SAD_value)
{
min_SAD_value = SAD_value;
motion_pos_x[0] = l;
motion_pos_y[0] = k;
}
l++;
}
l = (j - start_pos);
k++;
}
// Here we do our assignments for the block with the lowest SAD.
v_x[i*step+j] = motion_pos_x[0] - j; //store motion vector x in array
v_y[i*step+j] = motion_pos_y[0] - i; //store motion vector y in array
//v_x_old[i*step+j] = motion_pos_x[0] - i; //store motion vector x in array -- this is for testing original MV in smoothness fn
//v_y_old[i*step+j] = motion_pos_y[0] - j; //store motion vector y in array -- this is for testing original MV in smoothness fn
}
}
}
void Pair_Motion::onelevlspiral_BM()
{
int SAD_value, min_SAD_value;
int motion_pos_x, motion_pos_y;
int i,j,m,l,k,t;
//These first two loops are for each pixel in the image. For the meantime, we start at search_size/2 and ignore edges
for (i = start_pos; i < height-(add_height - start_pos); i+=b_size) //goes through all vertical pixels
{
for (j = start_pos; j < width-(add_width - start_pos); j+=b_size) //goes through all horizontal pizels
{
l = j;
k = i;
//This is the same block as the block of current frame
SAD_value = calculate_SAD(i,j,l,k);
//Initializations of SAD value
min_SAD_value = SAD_value;
motion_pos_x = l;// + (b_size_div-1);
motion_pos_y = k;// + (b_size_div-1);
//This first outer loop is used to do the spiral search
//We are repeating patterns of moving right,down, left, then up.
//At the very end, we go right once more to finish things off.
//The algorithm is basically:
//right, down, left(m+1), up(m+1). And then right(m+1) at the very end.
for (m = 1; m < v_shift; m+=2)
{
//the variable m will tell us how much to shift each time
//the variable t is a counter. if we have to shift 5 times, we will
//shift one position at a time and calculate the SAD for each shift.
for(t = 0; t < m; t++)
{
l = l + 1; //m;
SAD_value = calculate_SAD(i,j,l,k);
if (SAD_value < min_SAD_value)
{
min_SAD_value = SAD_value;
motion_pos_x = l;// + (b_size_div-1);
motion_pos_y = k;// + (b_size_div-1);
}
}
for(t = 0; t < m; t++)
{
k = k + 1; //m;
SAD_value = calculate_SAD(i,j,l,k);
if (SAD_value < min_SAD_value)
{
min_SAD_value = SAD_value;
motion_pos_x = l;// + (b_size_div-1);
motion_pos_y = k;// + (b_size_div-1);
}
}
for(t = 0; t < m+1; t++)
{
l = l - 1; //(m + 1);
SAD_value = calculate_SAD(i,j,l,k);
if (SAD_value < min_SAD_value)
{
min_SAD_value = SAD_value;
motion_pos_x = l;// + (b_size_div-1);
motion_pos_y = k;// + (b_size_div-1);
}
}
for(t = 0; t < m+1; t++)
{
k = k - 1; //(m + 1);
SAD_value = calculate_SAD(i,j,l,k);
if (SAD_value < min_SAD_value)
{
min_SAD_value = SAD_value;
motion_pos_x = l;// + (b_size_div-1);
motion_pos_y = k;// + (b_size_div-1);
}
}
}
//This is what we do at the end to move across the top row.
for(t = 0; t < (m-1); t++)
{
l = l + 1; //m;
SAD_value = calculate_SAD(i,j,l,k);
if (SAD_value < min_SAD_value)
{
min_SAD_value = SAD_value;
motion_pos_x = l;// + (b_size_div-1);
motion_pos_y = k;// + (b_size_div-1);
}
}
// Here we do our assignments for the block with the lowest SAD.