-
-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathtransformer.py
560 lines (514 loc) · 26.6 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
# copyright: sktime developers, BSD-3-Clause License (see LICENSE file)
"""Extension template for transformers.
Purpose of this implementation template:
quick implementation of new estimators following the template
NOT a concrete class to import! This is NOT a base class or concrete class!
This is to be used as a "fill-in" coding template.
How to use this implementation template to implement a new estimator:
- make a copy of the template in a suitable location, give it a descriptive name.
- work through all the "todo" comments below
- fill in code for mandatory methods, and optionally for optional methods
- do not write to reserved variables: is_fitted, _is_fitted, _X, _y,
_converter_store_X, transformers_, _tags, _tags_dynamic
- you can add more private methods, but do not override BaseEstimator's private methods
an easy way to be safe is to prefix your methods with "_custom"
- change docstrings for functions and the file
- ensure interface compatibility by sktime.utils.estimator_checks.check_estimator
- once complete: use as a local library, or contribute to sktime via PR
- more details:
https://www.sktime.net/en/stable/developer_guide/add_estimators.html
Mandatory implements:
fitting - _fit(self, X, y=None)
transformation - _transform(self, X, y=None)
Optional implements:
inverse transformation - _inverse_transform(self, X, y=None)
update - _update(self, X, y=None)
fitted parameter inspection - _get_fitted_params()
Testing - required for sktime test framework and check_estimator usage:
get default parameters for test instance(s) - get_test_params()
"""
# todo: write an informative docstring for the file or module, remove the above
# todo: add an appropriate copyright notice for your estimator
# estimators contributed to sktime should have the copyright notice at the top
# estimators of your own do not need to have permissive or BSD-3 copyright
# todo: uncomment the following line, enter authors' GitHub IDs
# __author__ = [authorGitHubID, anotherAuthorGitHubID]
# todo: add any necessary sktime external imports here
from sktime.transformations.base import BaseTransformer
# todo: add any necessary sktime internal imports here
# todo: for imports of sktime soft dependencies:
# make sure to fill in the "python_dependencies" tag with the package import name
# import soft dependencies only inside methods of the class, not at the top of the file
# todo: change class name and write docstring
class MyTransformer(BaseTransformer):
"""Custom transformer. todo: write docstring.
todo: describe your custom transformer here
fill in sections appropriately
docstring must be numpydoc compliant
Parameters
----------
parama : int
descriptive explanation of parama
paramb : string, optional (default='default')
descriptive explanation of paramb
paramc : boolean, optional (default= whether paramb is not the default)
descriptive explanation of paramc
and so on
est : sktime.estimator, BaseEstimator descendant
descriptive explanation of est
est2: another estimator
descriptive explanation of est2
and so on
"""
# todo: fill out estimator tags here
# tags are inherited from parent class if they are not set
#
# todo: define the transformer scitype by setting the tags
# scitype:transform-input - the expected input scitype of X
# scitype:transform-output - the output scitype that transform produces
# scitype:transform-labels - whether y is used and if yes which scitype
# scitype:instancewise - whether transform uses all samples or acts by instance
#
# todo: define internal types for X, y in _fit/_transform by setting the tags
# X_inner_mtype - the internal mtype used for X in _fit and _transform
# y_inner_mtype - if y is used, the internal mtype used for y; usually "None"
# setting this guarantees that X, y passed to _fit, _transform are of above types
# for possible mtypes see datatypes.MTYPE_REGISTER, or the datatypes tutorial
#
# when scitype:transform-input is set to Panel:
# X_inner_mtype must be changed to one or a list of sktime Panel mtypes
# when scitype:transform-labels is set to Series or Panel:
# y_inner_mtype must be changed to one or a list of compatible sktime mtypes
# the other tags are "safe defaults" which can usually be left as-is
_tags = {
# to list all valid tags with description, use sktime.registry.all_tags
# all_tags(estimator_types="transformer", as_dataframe=True)
#
#
# behavioural tags: transformer type
# ----------------------------------
#
# scitype:transform-input, scitype:transform-output, scitype:transform-labels
# control the input/output type of transform, in terms of scitype
#
# scitype:transform-input, scitype:transform-output should be the
# simplest scitype that describes the mapping, taking into account vectorization
# a transform that produces Series when given Series, Panel when given Panel
# should have both transform-input and transform-output as "Series"
# a transform that produces a tabular DataFrame (Table)
# when given Series or Panel should have transform-input "Series"
# and transform-output as "Primitives"
"scitype:transform-input": "Series",
# valid values: "Series", "Panel"
"scitype:transform-output": "Series",
# valid values: "Series", "Panel", "Primitives"
#
# scitype:instancewise = is fit_transform an instance-wise operation?
# instance-wise = only values of a given series instance are used to transform
# that instance. Example: Fourier transform; non-example: series PCA
"scitype:instancewise": True,
#
# scitype:transform-labels types the y used in transform
# if y is not used in transform, this should be "None"
"scitype:transform-labels": "None",
# valid values: "None" (not needed), "Primitives", "Series", "Panel"
#
#
# behavioural tags: internal type
# ----------------------------------
#
# X_inner_mtype, y_inner_mtype control which format X/y appears in
# in the inner functions _fit, _transform, etc
"X_inner_mtype": "pd.DataFrame",
"y_inner_mtype": "None",
# valid values: str and list of str
# if str, must be a valid mtype str, in sktime.datatypes.MTYPE_REGISTER
# of scitype Series, Panel (panel data) or Hierarchical (hierarchical series)
# y_inner_mtype can also be of scitype Table (one row/instance per series)
# in that case, all inputs are converted to that one type
# if list of str, must be a list of valid str specifiers
# in that case, X/y are passed through without conversion if on the list
# if not on the list, converted to the first entry of the same scitype
#
# univariate-only controls whether internal X can be univariate/multivariate
# if True (only univariate), always applies vectorization over variables
"univariate-only": False,
# valid values: True = inner _fit, _transform receive only univariate series
# False = uni- and multivariate series are passed to inner methods
#
# requires_X = does X need to be passed in fit?
"requires_X": True,
# valid values: False (no), True = exception is raised if no X is seen in _fit
# requires_y setting is independent of requires_X
#
# requires_y = does y need to be passed in fit?
"requires_y": False,
# valid values: False (no), True = exception is raised if no y is seen in _fit
# requires_X setting is independent of requires_y
#
# remember_data = whether all data seen is remembered as self._X
"remember_data": False,
# valid vales: False (no), True = self._X is created/update in fit/update
# self._X is all X passed via fit or update, updated via update_data
# self._X is of mtype seen in fit, update adds more data to the same container
# self._X can be used (readonly) by the estimator in _fit, _transform, _update
# if set to True, fit-is-empty must be set to False
#
# capability tags: properties of the estimator
# --------------------------------------------
#
# fit_is_empty = is fit empty and can be skipped?
"fit_is_empty": True,
# valid values: True = _fit is considered empty and skipped, False = No
# CAUTION: default is "True", i.e., _fit will be skipped even if implemented
#
# X-y-must-have-same-index = can estimator handle different X/y index?
"X-y-must-have-same-index": False,
# valid values: boolean True (yes), False (no)
# if True, raises exception if X.index is not contained in y.index
#
# enforce_index_type = index type that needs to be enforced in X/y
"enforce_index_type": None,
# valid values: pd.Index subtype, or list of pd.Index subtype
# if not None, raises exception if X.index, y.index level -1 is not of that type
#
# transform-returns-same-time-index = does transform return same index as input?
"transform-returns-same-time-index": False,
# valid values: boolean True (yes), False (no)
# if True, transform and inverse_transform returns should have
# same length and same index (if pandas) as inputs
# no exception is raised if this tag is incorrectly set
#
# capability:inverse_transform = is inverse_transform implemented?
"capability:inverse_transform": False,
# valid values: boolean True (yes), False (no)
# if True, _inverse_transform must be implemented
# if False, exception is raised if inverse_transform is called,
# unless the skip-inverse-transform tag is set to True
#
# capability:inverse_transform:range = domain of invertibility of transform
"capability:inverse_transform:range": None,
# valid values: None (no range), list of two floats [min, max]
# if None, inverse_transform is assumed to be defined for all values
# if list of floats, invertibility is assumed
# only in the closed interval [min, max] of transform
# note: the range applies to the *input* of transform, not the output
#
# capability:inverse_transform:exact = is inverse transform exact?
"capability:inverse_transform:exact": True,
# valid values: boolean True (yes), False (no)
# if True, inverse_transform is assumed to be exact inverse of transform
# if False, inverse_transform is assumed to be an approximation
#
# skip-inverse-transform = is inverse-transform skipped when called?
"skip-inverse-transform": False,
# if False, capability:inverse_transform tag behaviour is as per default
# if True, inverse_transform is the identity transform and raises no exception
# this is useful for transformers where inverse_transform
# may be called but should behave as the identity, e.g., imputers
#
# capability:unequal_length = can the transformer handle unequal length panels,
# i.e., when passed unequal length instances in Panel or Hierarchical data
"capability:unequal_length": True,
# valid values: boolean True (yes), False (no)
# if False, may raise exception when passed unequal length Panel/Hierarchical
#
# capability:unequal_length:removes = if passed Panel/Hierarchical,
# is transform result always guaranteed to be equal length (and series)?
"capability:unequal_length:removes": False,
# valid values: boolean True (yes), False (no)
# applicable only if scitype:transform-output is not "Primitives"
# used for search index and validity checking, does not raise direct exception
#
# handles-missing-data = can the transformer handle missing data (np or pd.NA)?
"handles-missing-data": False, # can estimator handle missing data?
# valid values: boolean True (yes), False (no)
# if False, may raise exception when passed time series with missing values
#
# capability:missing_values:removes = if passed time series
# is transform result always guaranteed to contain no missing values?
"capability:missing_values:removes": False,
# valid values: boolean True (yes), False (no)
# used for search index and validity checking, does not raise direct exception
#
# ----------------------------------------------------------------------------
# packaging info - only required for sktime contribution or 3rd party packages
# ----------------------------------------------------------------------------
#
# ownership and contribution tags
# -------------------------------
#
# author = author(s) of th estimator
# an author is anyone with significant contribution to the code at some point
"authors": ["author1", "author2"],
# valid values: str or list of str, should be GitHub handles
# this should follow best scientific contribution practices
# scope is the code, not the methodology (method is per paper citation)
# if interfacing a 3rd party estimator, ensure to give credit to the
# authors of the interfaced estimator
#
# maintainer = current maintainer(s) of the estimator
# per algorithm maintainer role, see governance document
# this is an "owner" type role, with rights and maintenance duties
# for 3rd party interfaces, the scope is the sktime class only
"maintainers": ["maintainer1", "maintainer2"],
# valid values: str or list of str, should be GitHub handles
# remove tag if maintained by sktime core team
#
# dependency tags: python version and soft dependencies
# -----------------------------------------------------
#
# python version requirement
"python_version": None,
# valid values: str, PEP 440 valid python version specifiers
# raises exception at construction if local python version is incompatible
#
# soft dependency requirement
"python_dependencies": None,
# valid values: str or list of str, PEP 440 valid package version specifiers
# raises exception at construction if modules at strings cannot be imported
}
# in case of inheritance, concrete class should typically set tags
# alternatively, descendants can set tags in __init__
# avoid if possible, but see __init__ for instructions when needed
# todo: add any hyper-parameters and components to constructor
def __init__(self, est, parama, est2=None, paramb="default", paramc=None):
# estimators should precede parameters
# if estimators have default values, set None and initialize below
# todo: write any hyper-parameters and components to self
self.est = est
self.parama = parama
self.paramb = paramb
self.paramc = paramc
# IMPORTANT: the self.params should never be overwritten or mutated from now on
# for handling defaults etc, write to other attributes, e.g., self._parama
# for estimators, initialize a clone, e.g., self.est_ = est.clone()
# leave this as is
super().__init__()
# todo: optional, parameter checking logic (if applicable) should happen here
# if writes derived values to self, should *not* overwrite self.parama etc
# instead, write to self._parama, self._newparam (starting with _)
# todo: default estimators should have None arg defaults
# and be initialized here
# do this only with default estimators, not with parameters
# if est2 is None:
# self.est2 = MyDefaultEstimator()
# todo: if tags of estimator depend on component tags, set these here
# only needed if estimator is a composite
# tags set in the constructor apply to the object and override the class
#
# example 1: conditional setting of a tag
# if est.foo == 42:
# self.set_tags(handles-missing-data=True)
# example 2: cloning tags from component
# self.clone_tags(est2, ["enforce_index_type", "handles-missing-data"])
# todo: implement this, mandatory (except in special case below)
def _fit(self, X, y=None):
"""Fit transformer to X and y.
private _fit containing the core logic, called from fit
Parameters
----------
X : Series or Panel of mtype X_inner_mtype
if X_inner_mtype is list, _fit must support all types in it
Data to fit transform to
y : Series or Panel of mtype y_inner_mtype, default=None
Additional data, e.g., labels for transformation
Returns
-------
self: reference to self
"""
# implement here
# X, y passed to this function are always of X_inner_mtype, y_inner_mtype
# IMPORTANT: avoid side effects to X, y
#
# any model parameters should be written to attributes ending in "_"
# attributes set by the constructor must not be overwritten
# if used, estimators should be cloned to attributes ending in "_"
# the clones, not the originals, should be used or fitted if needed
#
# special case: if no fitting happens before transformation
# then: delete _fit (don't implement)
# set "fit_is_empty" tag to True
#
# Note: when interfacing a model that has fit, with parameters
# that are not data (X, y) or data-like,
# but model parameters, *don't* add as arguments to fit, but treat as follows:
# 1. pass to constructor, 2. write to self in constructor,
# 3. read from self in _fit, 4. pass to interfaced_model.fit in _fit
# todo: implement this, mandatory
def _transform(self, X, y=None):
"""Transform X and return a transformed version.
private _transform containing core logic, called from transform
Parameters
----------
X : Series, Panel, or Hierarchical data, of mtype X_inner_mtype
if X_inner_mtype is list, _transform must support all types in it
Data to be transformed
y : Series, Panel, or Hierarchical data, of mtype y_inner_mtype, default=None
Additional data, e.g., labels for transformation
Returns
-------
transformed version of X
"""
# implement here
# X, y passed to this function are always of X_inner_mtype, y_inner_mtype
# IMPORTANT: avoid side effects to X, y
#
# if transform-output is "Primitives":
# return should be pd.DataFrame, with as many rows as instances in input
# if input is a single series, return should be single-row pd.DataFrame
# if transform-output is "Series":
# return should be of same mtype as input, X_inner_mtype
# if multiple X_inner_mtype are supported, ensure same input/output
# if transform-output is "Panel":
# return a multi-indexed pd.DataFrame of Panel mtype pd_multiindex
#
# todo: add the return mtype/scitype to the docstring, e.g.,
# Returns
# -------
# X_transformed : Series of mtype pd.DataFrame
# transformed version of X
# todo: consider implementing this, optional
# if not implementing, delete the _inverse_transform method
# inverse transform exists only if transform does not change scitype
# i.e., Series transformed to Series
def _inverse_transform(self, X, y=None):
"""Inverse transform, inverse operation to transform.
private _inverse_transform containing core logic, called from inverse_transform
Parameters
----------
X : Series, Panel, or Hierarchical data, of mtype X_inner_mtype
if X_inner_mtype is list, _inverse_transform must support all types in it
Data to be inverse transformed
y : Series, Panel, or Hierarchical data, of mtype y_inner_mtype, default=None
Additional data, e.g., labels for transformation
Returns
-------
inverse transformed version of X
"""
# implement here
# IMPORTANT: avoid side effects to X, y
#
# type conventions are exactly those in _transform, reversed
#
# for example: if transform-output is "Series":
# return should be of same mtype as input, X_inner_mtype
# if multiple X_inner_mtype are supported, ensure same input/output
#
# todo: add the return mtype/scitype to the docstring, e.g.,
# Returns
# -------
# X_inv_transformed : Series of mtype pd.DataFrame
# inverse transformed version of X
# todo: consider implementing this, optional
# if not implementing, delete the _update method
# standard behaviour is "no update"
# also delete in the case where there is no fitting
def _update(self, X, y=None):
"""Update transformer with X and y.
private _update containing the core logic, called from update
Parameters
----------
X : Series, Panel, or Hierarchical data, of mtype X_inner_mtype
if X_inner_mtype is list, _update must support all types in it
Data to update transformer with
y : Series, Panel, or Hierarchical data, of mtype y_inner_mtype, default=None
Additional data, e.g., labels for tarnsformation
Returns
-------
self: reference to self
"""
# implement here
# X, y passed to this function are always of X_inner_mtype, y_inner_mtype
# IMPORTANT: avoid side effects to X, y
#
# any model parameters should be written to attributes ending in "_"
# attributes set by the constructor must not be overwritten
# if used, estimators should be cloned to attributes ending in "_"
# the clones, not the originals, should be used or fitted if needed
# todo: consider implementing this, optional
# implement only if different from default:
# default retrieves all self attributes ending in "_"
# and returns them with keys that have the "_" removed
# if not implementing, delete the method
# avoid overriding get_fitted_params
def _get_fitted_params(self):
"""Get fitted parameters.
private _get_fitted_params, called from get_fitted_params
State required:
Requires state to be "fitted".
Returns
-------
fitted_params : dict with str keys
fitted parameters, keyed by names of fitted parameter
"""
# implement here
#
# when this function is reached, it is already guaranteed that self is fitted
# this does not need to be checked separately
#
# parameters of components should follow the sklearn convention:
# separate component name from parameter name by double-underscore
# e.g., componentname__paramname
# todo: return default parameters, so that a test instance can be created
# required for automated unit and integration testing of estimator
@classmethod
def get_test_params(cls, parameter_set="default"):
"""Return testing parameter settings for the estimator.
Parameters
----------
parameter_set : str, default="default"
Name of the set of test parameters to return, for use in tests. If no
special parameters are defined for a value, will return `"default"` set.
There are currently no reserved values for transformers.
Returns
-------
params : dict or list of dict, default = {}
Parameters to create testing instances of the class
Each dict are parameters to construct an "interesting" test instance, i.e.,
`MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance.
`create_test_instance` uses the first (or only) dictionary in `params`
"""
# todo: set the testing parameters for the estimators
# Testing parameters can be dictionary or list of dictionaries
# Testing parameter choice should cover internal cases well.
#
# this method can, if required, use:
# class properties (e.g., inherited); parent class test case
# imported objects such as estimators from sktime or sklearn
# important: all such imports should be *inside get_test_params*, not at the top
# since imports are used only at testing time
#
# The parameter_set argument is not used for automated, module level tests.
# It can be used in custom, estimator specific tests, for "special" settings.
# A parameter dictionary must be returned *for all values* of parameter_set,
# i.e., "parameter_set not available" errors should never be raised.
#
# A good parameter set should primarily satisfy two criteria,
# 1. Chosen set of parameters should have a low testing time,
# ideally in the magnitude of few seconds for the entire test suite.
# This is vital for the cases where default values result in
# "big" models which not only increases test time but also
# run into the risk of test workers crashing.
# 2. There should be a minimum two such parameter sets with different
# sets of values to ensure a wide range of code coverage is provided.
#
# example 1: specify params as dictionary
# any number of params can be specified
# params = {"est": value0, "parama": value1, "paramb": value2}
#
# example 2: specify params as list of dictionary
# note: Only first dictionary will be used by create_test_instance
# params = [{"est": value1, "parama": value2},
# {"est": value3, "parama": value4}]
# return params
#
# example 3: parameter set depending on param_set value
# note: only needed if a separate parameter set is needed in tests
# if parameter_set == "special_param_set":
# params = {"est": value1, "parama": value2}
# return params
#
# # "default" params - always returned except for "special_param_set" value
# params = {"est": value3, "parama": value4}
# return params