-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_JHU.py
129 lines (102 loc) · 4.55 KB
/
test_JHU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
from torch.utils import data
from Datasets.dataset_semantic_QNRF_JHU import Dataset as full_supervise_Dataset
from Models.model import Model
import os
import argparse
import matplotlib.pyplot as plt
import torch.nn.functional as F
import numpy as np
checkpoint_logs_name = 'JHU'
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=1337, help='random seed')
parser.add_argument('--dataset', default='JHU', type=str, help='dataset') # SHB
parser.add_argument('--data_path', default='./Data_Crowd_Counting/', type=str, help='path to dataset')
parser.add_argument('--load', default=True, action='store_true', help='load checkpoint')
parser.add_argument('--save_path', default='./checkpoints/' + checkpoint_logs_name, type=str, help='path to save checkpoint') # seman_SHB
parser.add_argument('--gpu', default=0, type=int, help='gpu id')
args = parser.parse_args()
def normalize(image, MIN_BOUND, MAX_BOUND):
image = (image - MIN_BOUND) / (MAX_BOUND - MIN_BOUND)
reverse_image = 1 - image
return reverse_image
test_dataset = full_supervise_Dataset(args.data_path, args.dataset, False)
test_loader = data.DataLoader(test_dataset, batch_size=1, shuffle=False)
device = torch.device('cuda:' + str(args.gpu))
def create_model(ema=False):
# Network definition
net = Model()
model = net.to(device)
if ema:
for param in model.parameters():
param.detach_()
return model
model = create_model()
if args.load:
checkpoint = torch.load(os.path.join(args.save_path, 'checkpoint_best.pth'))
model.load_state_dict(checkpoint['model'])
iter_num = 0
model.eval()
print('start validation')
with torch.no_grad():
mae, mse = 0.0, 0.0
for i, (image, gt, den_val_gt, att_val_gt) in enumerate(test_loader):
image = image.to(device)
predict, dmp_to_att_val, seg_val = model(image)
# unc
T = 8
volume_batch_r = image.repeat(2, 1, 1, 1)
stride = volume_batch_r.shape[0] // 2
preds = torch.zeros([stride * T, 2, image.shape[2], image.shape[3]]).cuda()
for i in range(T // 2):
ema_inputs = volume_batch_r + torch.clamp(torch.randn_like(volume_batch_r) * 0.1, -0.2, 0.2)
with torch.no_grad():
_, _, ema_seg = model(ema_inputs)
preds[2 * stride * i:2 * stride * (i + 1)] = ema_seg
preds = F.softmax(preds, dim=1)
preds = preds.reshape(T, stride, 2, image.shape[2], image.shape[3])
preds = torch.mean(preds, dim=0) # (batch /2, 1, 128, 128)
uncertainty = -1.0 * torch.sum(preds * torch.log(preds + 1e-6), dim=1, keepdim=True) # (batch/2, 1, 128, 128)
uncertainty_norm = normalize(uncertainty, 0, np.log(2)) * 7
mae += torch.abs(predict.sum() - den_val_gt.sum()).item()
mse += ((predict.sum() - den_val_gt.sum()) ** 2).item()
# save GT
save_img = np.transpose(image.cpu().numpy().squeeze(), [1, 2, 0]) * 0.2 + 0.45
density_gt = den_val_gt.cpu().numpy().squeeze().astype('float32')
attention_gt = att_val_gt.cpu().numpy().squeeze()
# density
save_pre_den = predict.data
save_pre_den = save_pre_den.cpu().numpy().squeeze().astype('float32')
# dmp_to_seg
save_pre_dmp_to_att = dmp_to_att_val.data
save_pre_dmp_to_att[save_pre_dmp_to_att >= 0.5] = 1.0
save_pre_dmp_to_att[save_pre_dmp_to_att < 0.5] = 0.0
save_pre_dmp_to_att = save_pre_dmp_to_att.cpu().numpy().squeeze() # .astype('uint8')
# seg
save_pre_att_2 = seg_val.data
save_pre_att_2 = save_pre_att_2.cpu().numpy().squeeze().astype('uint8')
save_pre_att_2 = np.transpose(save_pre_att_2, [1, 2, 0])
save_pre_att_2 = np.argmin(save_pre_att_2, axis=2)
# unc
uncertainty = uncertainty.cpu().numpy().squeeze().astype('float32')
uncertainty = uncertainty * (uncertainty > 0.5)
uncertainty_norm = uncertainty_norm.cpu().numpy().squeeze().astype('float32')
uncertainty_norm = uncertainty_norm
plt.figure()
plt.subplot(1, 6, 1)
plt.imshow(save_pre_den)
plt.subplot(1, 6, 2)
plt.imshow(density_gt)
plt.subplot(1, 6, 3)
plt.imshow(save_pre_dmp_to_att)
plt.subplot(1, 6, 4)
plt.imshow(save_pre_att_2)
plt.subplot(1, 6, 5)
plt.imshow(uncertainty, cmap='inferno')
plt.subplot(1, 6, 6)
plt.imshow(uncertainty_norm, cmap='inferno')
plt.show()
mae /= len(test_loader)
mse /= len(test_loader)
mse = mse ** 0.5
print('MAE:', mae, 'MSE:', mse)