-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpre_train.py
82 lines (69 loc) · 3.16 KB
/
pre_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#!/usr/bin/env python
import torch
from torch.utils.data import DataLoader
import pickle
from rdkit import Chem
from rdkit import rdBase
from tqdm import tqdm
import data_structs as ds
from data_structs import MolData, Vocabulary
from model import RNN
from utils import Variable, decrease_learning_rate
rdBase.DisableLog('rdApp.error')
def pretrain(smiles_file='data/chembl31.smi', save_voc='data/Voc', restore_from=None,
batch_size=128, learning_rate=0.001, epoch_num=5,
lr_decrease_rate=0.03, save_dir='data/Prior.ckpt'):
"""Trains the Prior RNN"""
print("Reading smiles...")
smiles_list = ds.canonicalize_smiles_from_file(smiles_file)
# Read vocabulary from a file or create a new one
print("Constructing vocabulary...")
ds.construct_vocabulary(smiles_list, save_voc)
voc = Vocabulary(init_from_file=save_voc)
# Create a Dataset from a SMILES list
moldata = MolData(smiles_list, voc)
data = DataLoader(moldata, batch_size=batch_size, shuffle=True, drop_last=True,
collate_fn=MolData.collate_fn)
Prior = RNN(voc)
# Can restore from a saved RNN
if restore_from:
Prior.rnn.load_state_dict(torch.load(restore_from))
optimizer = torch.optim.Adam(Prior.rnn.parameters(), lr = learning_rate)
for epoch in range(1, epoch_num+1):
# When training on a few million compounds, this model converges
# in a few of epochs or even faster. If model sized is increased
# its probably a good idea to check loss against an external set of
# validation SMILES to make sure we dont overfit too much.
for step, batch in tqdm(enumerate(data), total=len(data)):
# Sample from DataLoader
seqs = batch.long()
# Calculate loss
log_p, _ = Prior.likelihood(seqs)
loss = - log_p.mean()
# Calculate gradients and take a step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Every 500 steps we decrease learning rate and print some information
if step % 500 == 0 and step != 0:
decrease_learning_rate(optimizer, decrease_by=lr_decrease_rate)
tqdm.write("*" * 50)
tqdm.write("Epoch {:3d} step {:3d} loss: {:5.2f}\n".format(epoch, step, loss.item()))
seqs, likelihood, _ = Prior.sample(128)
valid = 0
for i, seq in enumerate(seqs.cpu().numpy()):
smile = voc.decode(seq)
if Chem.MolFromSmiles(smile):
valid += 1
if i < 5:
tqdm.write(smile)
tqdm.write("\n{:>4.1f}% valid SMILES".format(100 * valid / len(seqs)))
tqdm.write("*" * 50 + "\n")
#torch.save(Prior.rnn.state_dict(), "data/Prior.ckpt")
# Save the Prior
torch.save(Prior.rnn.state_dict(), save_dir)
if __name__ == "__main__":
pretrain(smiles_file='data/chembl31.smi', save_voc='data/Voc',
batch_size=128, learning_rate=0.001,
epoch_num=5, lr_decrease_rate=0.03,
save_dir='data/Prior.ckpt')