Skip to content

Latest commit

 

History

History
7 lines (4 loc) · 789 Bytes

README.md

File metadata and controls

7 lines (4 loc) · 789 Bytes

QNN

Quantized Neural Network

Traditionally, deep learning uses single precision floating point (float32) data type. Recent researches show that using lower precision say half precision floating point (float16) or even unsigned 8-bit integer (uint8) doesn’t impact the neural network accuracy significantly. Although there are now tonnes of tutorials in using machine learning framework like Tensorflow but I couldn't find many tutorials on Tensorflow Lite or quantization. Therefore, I decided to write some tutorials to explains quantization and fast inference.

You don’t need to have prior knowledge in quantization but I do expect you be familiar with Tensorflow and basic of deep neural network. In this tutorials I will use TensorflowLite in Tensorflow 1.10 and Python 3.