-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlambda_lounge_typed.hs
221 lines (178 loc) · 7 KB
/
lambda_lounge_typed.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
{-# LANGUAGE GADTs #-}
-- Define the language
data Exp where
Fun :: Var -> Exp -> Exp
App :: Exp -> Exp -> Exp
Constant :: Value -> Exp
Plus :: Exp -> Exp -> Exp
Minus :: Exp -> Exp -> Exp
Times :: Exp -> Exp -> Exp
Divide :: Exp -> Exp -> Exp
Variable :: Int -> Exp
Not :: Exp -> Exp
And :: Exp -> Exp -> Exp
Or :: Exp -> Exp -> Exp
Branch :: Exp -> Exp -> Exp -> Exp
data Value = VNat Nat | VInt Int | VBool Bool | VFunction (Value -> Value)
--Custom datatypes.
data Nat = Zero | Succ Nat
deriving (Show, Eq)
instance Show Value where
show (VInt x) = show x
show (VNat x) = show x
show (VBool x) = show x
show _ = "<Function>"
data Var = Var Int Type
deriving (Eq, Show)
data Type = TInt | TBool | TNat | TFunction Type Type | TError
deriving (Eq, Show)
-- provide operations for Nats.
add' :: Nat -> Nat -> Nat
add' x Zero = x
add' x (Succ y) = (Succ (add' (x) (y)))
times' :: Nat -> Nat -> Nat
times' x Zero = Zero
times' x (Succ y) = (add' x (times' x y))
--Functions to extract Nats from the Value wrapper. Along with translateint below, this allows me to map customtypes to their usual counterparts, for the purposes of the talk.
unwrapint :: Value -> Nat
unwrapint x = case x of
(VNat Zero) -> Zero
(VNat (Succ x)) -> Succ (x)
translateint :: Nat -> Int
translateint Zero = 0
translateint (Succ x) = (translateint x) + 1
--define eval
eval :: Exp -> Value
eval (Constant x) = x
eval (Plus x y) = case (eval x, eval y) of
(VInt x, VInt y) -> VInt (x+y)
(VNat x, VNat y) -> VNat (add' (x) (y))
(VInt _, VNat _) -> error "Incompatible argument types!"
(VNat _, VInt _) -> error "Incompatible argument types!"
_ -> error "Arguments must be Ints or Nats!"
eval (Minus x y) = case (eval x, eval y) of
(VInt x, VInt y) -> VInt (x-y)
(VNat x, VNat y) -> VInt ((translateint x) - (translateint y))
(VInt _, VNat _) -> error "Incompatible argument types!"
(VNat _, VInt _) -> error "Incompatible argument types!"
_ -> error "Arguments must be Ints!"
eval (Times x y) = case (eval x, eval y) of
(VInt x, VInt y) -> VInt (x*y)
(VNat x, VNat y) -> VNat (times' (x) (y))
(VInt x, VNat y) -> VInt (translateint(y) * x)
(VNat x, VInt y) -> VInt (translateint(x) * y)
_ -> error "Arguments must be Ints or Nats!"
eval (Divide x y) = case (eval x, eval y) of
(VInt x, VInt y) -> if (y/=0) then VInt (div x y) else error "Division by zero!"
(VNat x, VNat y) -> if (y/= Zero) then VInt (div (translateint x) (translateint y)) else error "Division by zero!"
(VInt _, VNat _) -> error "Incompatible argument types!"
(VNat _, VInt _) -> error "Incompatible argument types!"
_ -> error "Arguments must be integers!"
eval (Not x) = case (eval x) of
(VBool x) -> VBool (not x)
_ -> error "Not Boolean!"
eval (And x y) = case (eval x, eval y) of
(VBool x, VBool y) -> VBool(x && y)
_ -> error "Not Boolean!"
eval (Or x y) = case (eval x, eval y) of
(VBool x, VBool y) -> VBool(x || y)
_ -> error "Not Boolean!"
eval (Branch x y z) = case (eval x, eval y, eval z) of
(VBool x, this, that) -> if (x==True) then this else that
_ -> error "Condition must evaluate to Bool or Bool'!"
eval (App first second) = case (eval first) of
(VFunction f) -> f (eval second)
_ -> error "First argument is not a function!"
eval (Fun (Var v _) f) = VFunction (\x -> eval(subst f v x))
subst :: Exp -> Int -> Value -> Exp
subst c@(Constant _) _ _ = c
subst (Variable v ) (v' ) x = if (v==v') then (Constant x) else (Variable v )
subst (Plus m n) v x = Plus (subst m v x) (subst n v x)
subst (Minus m n) v x = Minus (subst m v x) (subst n v x)
subst (Times m n) v x = Times (subst m v x) (subst n v x)
subst (Divide m n) v x = Divide (subst m v x) (subst n v x)
subst (Not m) v x = Not (subst m v x)
subst (And m n) v x = And (subst m v x) (subst n v x)
subst (Or m n) v x = Or (subst m v x) (subst n v x)
subst (App m n) v x = App (subst m v x) (subst n v x)
subst (Fun (Var v' t') b) (v ) x = if (v==v') then (Fun (Var v' t') b) else (Fun (Var v' t') (subst b (v ) x))
-- this computes the type of an expression
evalT :: (Int -> Type) -> Exp -> Type
evalT _ (Constant (VInt _)) = TInt
evalT _ (Constant (VBool _)) = TBool
evalT _ (Constant (VNat _)) = TNat
evalT _ (Constant _) = TError
evalT tenv (Variable v) = tenv v
evalT tenv (Plus x y) = case (evalT tenv x, evalT tenv y) of
(TInt, TInt ) -> TInt
(TNat , TNat ) -> TNat
_ -> TError
evalT tenv (Minus x y) = case (evalT tenv x, evalT tenv y) of
(TInt , TInt ) -> TInt
(TNat , TNat ) -> TInt
_ -> TError
evalT tenv (Times x y) = case (evalT tenv x, evalT tenv y) of
(TInt , TInt ) -> TInt
(TNat , TNat ) -> TNat
(TNat , TInt) -> TInt
(TInt , TNat) -> TInt
_ -> TError
evalT tenv (Divide x y) = case (evalT tenv x, evalT tenv y) of
(TInt , TInt ) -> TInt
(TNat, TNat) -> TInt
_ -> TError
evalT tenv (Not x) = case (evalT tenv x) of
(TBool ) -> TBool
_ -> TError
evalT tenv (And x y) = case (evalT tenv x, evalT tenv y) of
(TBool , TBool ) -> TBool
_ -> TError
evalT tenv (Or x y) = case (evalT tenv x, evalT tenv y) of
(TBool , TBool ) -> TBool
_ -> TError
evalT tenv (Branch x y z) = case (evalT tenv x, evalT tenv y, evalT tenv z) of
(TBool , this, that) -> if (this==that) then this else TError
_ -> TError
evalT tenv (App f x) = case (evalT tenv f) of
(TFunction a b) -> if (a==(evalT tenv x)) then b else TError
_ -> TError
evalT tenv (Fun (Var v t) f) = TFunction t (evalT (extend tenv (v) t) f)
-- This is the type environment we use
extend :: Eq a => (a -> b) -> a -> b -> (a -> b)
extend f x y = \w -> if (w==x) then y else (f w)
-- This is the eval' we'll call
eval' :: Exp -> Value
eval' e = if (evalT initialenv e /= TError) then eval e else error "Type error!"
where
initialenv _ = TError
-- predefined expressions for testing
plusone = Fun (Var 1 TNat) (Plus (Variable 1 ) (Constant (VNat (Succ Zero))))
timesfour = Fun (Var 1 TNat) (Times (Variable 1 ) (Constant (VNat (Succ (Succ (Succ (Succ Zero)))))))
double = Fun (Var 1 (TFunction TNat TNat)) (
Fun (Var 2 TNat) (
App (Variable 1 ) (
App (Variable 1 ) (
(Variable 2 )))))
--talk
data Pair = Pair Int Int
deriving (Eq, Show)
thepair = Pair 1 2
data Tree' = Empty | Node Int Tree' Tree'
deriving (Eq, Show)
atree = Node 1 Empty Empty
btree = Node 2 Empty Empty
ctree = Node 3 atree btree
dtree = Node 10 btree ctree
--bad = Pair "Lambda" "Lounge"
-- eval (Plus (Constant (VNat (Succ Zero))) (Constant (VNat (Succ (Succ (Succ Zero))))))
-- eval (Plus (Constant (VInt 0)) (Constant (VInt 3)))
--eval (Times (Constant (VNat (Succ (Succ (Succ Zero))))) (Constant (VInt 100)))
data List' a = Nil | Cons a (List' a)
deriving (Eq, Show)
len :: List' a -> Int
len Nil = 0
len (Cons x xs) = 1+len(xs)
firstlist = Cons 1 (Cons 2 (Cons 3 Nil))
secondlist = Cons 'a' (Cons 'b' (Cons 'd' (Cons 'e' Nil)))
--
--Future work: implement parametric polymorphism and quantification