-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
193 lines (154 loc) · 7.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from __future__ import print_function
import numpy as np
import cntk as ct
import os
from collections import OrderedDict
from _cntk_py import set_fixed_random_seed, force_deterministic_algorithms
from utils import *
# Ensure that we always get the same results
np.random.seed(1)
set_fixed_random_seed(1)
force_deterministic_algorithms()
class Main():
'''
Capsule Networks MNIST using CNTK v2.3.1
'''
# Define model dimensions
input_dim_model = (1, 28, 28) # images are 28 x 28 with 1 channel of color (gray)
output_dim_model = (10,)
perturbations_dim = (16,)
input_dim = 28*28
num_output_classes = 10
reconstruction_model = None
def train_and_test(self, reader_train, reader_test, reader_cv, restore_checkpoint=True):
'''
Train the model and validate the results
Args:
reader_train (:class:`~cntk.io.MinibatchSource`): the dataset reader for training.
reader_test (:class:`~cntk.io.MinibatchSource`): the dataset reader for evaluation.
restore_checkpoint (bool, optional): Continue training form latest checkpoint if True (default)
Returns:
None
'''
from CapsNet import CapsNet
self.input = ct.input_variable(self.input_dim_model, name='MINST_Input')
self.labels = ct.input_variable(self.output_dim_model, name='MINST_Labels')
self.perturbations = ct.input_variable(self.perturbations_dim, name='Perturbations')
self.caps_net = CapsNet(self.input/255., self.labels, routings=3, use_reconstruction=True)
# models
self.training_model, self.digitcaps_model, self.prediction_model, self.reconstruction_model = self.caps_net.models()
self.manipulation_model = self.caps_net.manipulation(self.perturbations)
# loss & error
loss, error = self.caps_net.criterion()
# Number of parameters in the network
# 5. Capsules on MNIST "... CapsNet has 8.2M parameters and 6.8M parameters without the reconstruction subnetwork."
num_parameters, num_tensors = get_number_of_parameters(self.training_model)
print("DigitCaps contains {} learneable parameters in {} parameter tensors.".format(num_parameters, num_tensors))
# Initialize the parameters for the trainer
minibatch_size = 128
num_samples_per_sweep = 60000
num_sweeps_to_train_with = 30
# Report & Checkpoint frequency
print_frequency = (4, ct.DataUnit.minibatch)
checkpoint_frequency = (100, ct.DataUnit.minibatch)
cross_validation_frequency = (40, ct.DataUnit.minibatch)
tensorboard_logdir = './tensorboard'
# Map the data streams to the input and labels.
self.input_map = {
self.labels : reader_train.streams.labels,
self.input : reader_train.streams.features
}
self.test_input_map = {
self.labels : reader_test.streams.labels,
self.input : reader_test.streams.features
}
self.cv_input_map = {
self.labels : reader_cv.streams.labels,
self.input : reader_cv.streams.features
}
# Instantiate progress writers.
progress_writers = [ct.logging.ProgressPrinter(
tag='Training',
num_epochs=int(num_samples_per_sweep * num_sweeps_to_train_with / minibatch_size / print_frequency[0]))]
training_progress_output_freq = 1
if tensorboard_logdir is not None:
self.tb_printer = ct.logging.TensorBoardProgressWriter(freq=training_progress_output_freq, log_dir=tensorboard_logdir, model=self.training_model)
progress_writers.append(self.tb_printer)
# Instantiate the learning rate schedule
learning_rate_schedule = [0.01] * 30 + [0.007]
learning_rate_schedule = ct.learning_parameter_schedule(learning_rate_schedule, minibatch_size=minibatch_size, epoch_size=num_samples_per_sweep)
# Instantiate the trainer object to drive the model training
learner = ct.adam(
self.training_model.parameters,
learning_rate_schedule,
momentum=[0.9],
variance_momentum=[0.999],
gaussian_noise_injection_std_dev=[0.0]
)
trainer = ct.Trainer(self.training_model, (loss, error), [learner], progress_writers)
ct.training_session(
trainer=trainer,
mb_source=reader_train,
mb_size=minibatch_size,
model_inputs_to_streams=self.input_map,
max_samples=num_samples_per_sweep * num_sweeps_to_train_with,
progress_frequency=print_frequency,
checkpoint_config=ct.CheckpointConfig(
filename='./checkpoints/checkpoint',
frequency=checkpoint_frequency,
restore=restore_checkpoint
),
cv_config=ct.CrossValidationConfig(
minibatch_size=128,
minibatch_source=reader_cv,
frequency=cross_validation_frequency,
callback=self.cross_validation_callbackfunc,
max_samples=1024,
model_inputs_to_streams=self.cv_input_map
),
test_config=ct.TestConfig(
minibatch_source=reader_test,
minibatch_size=minibatch_size,
model_inputs_to_streams=self.test_input_map
)
).train()
# save models
self.digitcaps_model.save('./models/digitcaps_model.cntk')
self.training_model.save('./models/training_model.cntk')
self.prediction_model.save('./models/prediction_model.cntk')
if self.reconstruction_model:
self.reconstruction_model.save('./models/reconstruction_model.cntk')
self.manipulation_model.save('./models/manipulation_model.cntk')
print('Done.')
def cross_validation_callbackfunc(self, index, average_error, cv_num_samples, cv_num_minibatches):
# Use a 5x5 matrix of images
minibatch = self.reader_cv.next_minibatch(25)
source_images = get_stream_by_shape(minibatch, (1, 784)).data.asarray()
source_labels = get_stream_by_shape(minibatch, (1, 10)).data.asarray()
decoded_images = self.reconstruction_model.eval({ self.input: np.reshape(source_images, (-1, 1, 28, 28)) })
# Reconstruction network
source_img = image_grid(source_images)
decoded_img = image_grid(decoded_images * 255)
# the input_variable is required by the write_image c++ implementation
img_shape = ct.input_variable(shape=(1, 140, 140), dtype=np.float32)
self.tb_printer.write_image('reconstruction', { img_shape : decoded_img }, index)
self.tb_printer.write_image('original', { img_shape : source_img }, index)
# Confidence graphs
softmax = self.caps_net.predict_class.eval({ self.input: np.reshape(source_images, (-1, 1, 28, 28)) })
ma1 = np.max(softmax, axis=1)
std = np.std(ma1)
mean = np.mean(ma1)
self.tb_printer.write_value('confidence/mean', mean, index)
self.tb_printer.write_value('confidence/std', std, index)
self.tb_printer.flush()
return True
def capsule_network(self, data_dir):
train_file = os.path.join(data_dir, "Train-28x28_cntk_text.txt")
test_file = os.path.join(data_dir, "Test-28x28_cntk_text.txt")
self.reader_train = create_reader(train_file, True, self.input_dim, self.num_output_classes)
self.reader_cv = create_reader(test_file, True, self.input_dim, self.num_output_classes)
self.reader_test = create_reader(test_file, False, self.input_dim, self.num_output_classes)
return self.train_and_test(self.reader_train, self.reader_test, self.reader_cv)
if __name__ == '__main__':
data_dir = os.path.join("data", "MNIST")
Main().capsule_network(data_dir)