forked from PatWie/CppNumericalSolvers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnonnegls.cpp
63 lines (52 loc) · 1.95 KB
/
nonnegls.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#include <iostream>
#include "../../include/cppoptlib/meta.h"
#include "../../include/cppoptlib/boundedproblem.h"
#include "../../include/cppoptlib/solver/lbfgsbsolver.h"
// to use CppNumericalSolvers just use the namespace "cppoptlib"
namespace cppoptlib {
// we will solve ||Xb-y|| s.t. b>=0
template<typename T>
class NonNegativeLeastSquares : public BoundedProblem<T> {
public:
using Superclass = BoundedProblem<T>;
using typename Superclass::TVector;
using TMatrix = typename Superclass::THessian;
const TMatrix X;
const TVector y;
public:
NonNegativeLeastSquares(const TMatrix &X_, const TVector y_) :
Superclass(X_.cols()),
X(X_), y(y_) {}
T value(const TVector &beta) {
return (X*beta-y).dot(X*beta-y);
}
void gradient(const TVector &beta, TVector &grad) {
grad = X.transpose()*2*(X*beta-y);
}
};
}
int main(int argc, char const *argv[]) {
const size_t DIM = 4;
const size_t NUM = 10;
typedef double T;
typedef cppoptlib::NonNegativeLeastSquares<T> TNNLS;
typedef typename TNNLS::TVector TVector;
typedef typename TNNLS::TMatrix TMatrix;
// create model X*b for arbitrary b
TMatrix X = TMatrix::Random(NUM, DIM);
TVector true_beta = TVector::Random(DIM);
TMatrix y = X*true_beta;
// perform non-negative least squares
TNNLS f(X, y);
f.setLowerBound(TVector::Zero(DIM));
// create initial guess (make sure it's valid >= 0)
TVector beta = TVector::Random(DIM);
beta = (beta.array() < 0).select(-beta, beta);
std::cout << "true b = " << true_beta.transpose() << "\tloss:" << f(true_beta) << std::endl;
std::cout << "start b = " << beta.transpose() << "\tloss:" << f(beta) << std::endl;
// init L-BFGS-B for box-constrained solving
cppoptlib::LbfgsbSolver<TNNLS> solver;
solver.minimize(f, beta);
std::cout << "final b = " << beta.transpose() << "\tloss:" << f(beta) << std::endl;
return 0;
}