-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgillespie.py
executable file
·216 lines (202 loc) · 8.97 KB
/
gillespie.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from algorithm import Algorithm
import gillespie_data
import numpy as np
import random
import math
class Gillespie(Algorithm):
"""
Subclass of Algorithm, allows Gillespie stochastic simulation algorithm (SSA) to
be run, for a specified run time or number of iterations, for a specified number of runs.
Methods:
__init__
gillespie: protected, accessed by Algorithm.run_simulation
"""
##############################################
## Class Constructor
##############################################
def __init__(self):
self._petri_net = None
self._run_time = None
self._num_runs = 1
self._time_step = None
self._num_iterations = None
self._simulation_data = []
self._algorithm = Gillespie._gillespie
##############################################
## Simulation Algorithm
##############################################
def _gillespie(self):
""" Run the Gillespie algorithm for the specified petri net and simulation variables. """
# Petri net data to local variables
try:
data = self._petri_net
except:
print 'Error: petri_net not set.'
return
try:
pre_arcs = np.asarray(data.stoichiometry.pre_arcs, dtype=int)
num_transitions = pre_arcs.shape[0]
num_places = pre_arcs.shape[1]
except:
print 'Error: pre_arcs missing.'
return
try:
rates = np.asarray(data.rates, dtype=float)
except:
print 'Error: rates missing.'
return
try:
initial_marking = data.initial_marking
except:
print 'Error: initial_marking missing.'
return
try:
stoichiometry_matrix = np.asarray(data.stoichiometry.stoichiometry_matrix, dtype=int)
dependency_matrix = np.asarray(data.stoichiometry.dependency_matrix, dtype=int)
dependency_matrix = np.vstack((dependency_matrix, np.ones(num_transitions, dtype=int)))
except:
print 'Error: calculate stoichiometry_matrix and dependency_matrix'
return
capacities = data.capacities
if capacities != None:
capacities = np.asarray(capacities, dtype=int)
test_arcs = data.test_arcs
if test_arcs != None:
test_arcs = np.asarray(test_arcs, dtype=int)
test_vector = np.any(test_arcs, axis=1)
inhibitory_arcs = data.inhibitory_arcs
if inhibitory_arcs != None:
inhibitory_arcs = np.asarray(inhibitory_arcs, dtype=int)
inhib_vector = np.any(inhibitory_arcs, axis=1)
# Simulation variables to local variables
num_iterations = self.num_iterations
run_time = self.run_time
time_step = self.time_step
if not num_iterations:
if not run_time or not time_step:
print 'Error: specify num_iterations or both run_time and time_step.'
return
else:
by_iteration = False
else:
by_iteration = True
# Dot eliminators
random_unif = random.random
random_exp = random.expovariate
local_sum = sum
local_any = any
local_less = np.less
local_logical_and = np.logical_and
local_greater = np.greater
local_greater_equal = np.greater_equal
# Ranges
transitions = range(num_transitions)
places = range(num_places)
# Algorithm data storage initialisation
current_time = 0
current_marking = np.copy(initial_marking)
event_freqs = [0] * num_transitions
local_hazards = [0] * num_transitions
channel = num_transitions
if by_iteration:
record_points = num_iterations + 1
time_array = np.zeros(record_points, dtype=float)
events = np.zeros(record_points - 1, dtype=int)
else:
time_array = np.arange(0, run_time + time_step, time_step, dtype=float)
record_points = len(time_array)
events = np.zeros((record_points - 1, num_transitions), dtype=int)
marking_array = np.zeros((record_points, num_places), dtype=int)
marking_array[0, :] = np.copy(initial_marking)
record_points = range(1, record_points)
# Simulation algorithm
for i in record_points:
# Extra loop required when by_iteration == False
while 1:
# Check if waiting time jumped past multiple timepoints
if not by_iteration:
if current_time >= time_array[i]:
break
# Calculate local hazards for each transition
for j in transitions:
# Check if local hazard needs to be recalculated
if dependency_matrix[channel, j] == 0:
pass
# Check if test arcs, inhibitory arcs or capacities block transition
elif test_arcs != None and test_vector[j] and local_any(local_less(current_marking, test_arcs[j,:])):
local_hazards[j] = 0
elif inhibitory_arcs != None and inhib_vector[j] and local_any(local_logical_and(
local_greater_equal(current_marking, inhibitory_arcs[j,:]), local_greater(inhibitory_arcs[j,:], 0))):
local_hazards[j] = 0
elif capacities != None and local_any(local_logical_and(local_greater(
(current_marking + stoichiometry_matrix[j,:]), capacities), local_greater(capacities, 0))):
local_hazards[j] = 0
# Otherwise calculate local hazard
else:
partial_hazard = 1
for k in places:
stoichiometry = pre_arcs[j, k]
if stoichiometry == 0:
pass
elif stoichiometry == 1:
partial_hazard *= current_marking[k]
else:
species_amount = current_marking[k]
if species_amount >= stoichiometry:
for l in range(0, stoichiometry):
partial_hazard *= ((species_amount - l) * (1.0/(l+1)))
else:
partial_hazard = 0
break
local_hazards[j] = partial_hazard * rates[j]
# Calculate global hazard and simulate waiting time
global_hazard = local_sum(local_hazards)
if global_hazard != 0:
time_change = random_exp(global_hazard)
# If global hazard is 0, net is dead - adjust data storage and end simulation
else:
if not by_iteration:
marking_array[i, :] = current_marking
events = events[0:i-1, :]
i +=1
else:
events = events[0:i-1]
time_array = time_array[0:i]
marking_array = marking_array[0:i,:]
output = gillespie_data.GillespieData()
output.times = time_array
output.markings = marking_array
output.event_freqs = event_freqs
output.iterations = i-1
output.events = events
print "Net went dead at time: %f" %time_array[-1]
return output
# Simulate which transition will fire after waiting time
random_fraction = random_unif()
total_fraction = 0
channel = -1
while total_fraction < random_fraction:
channel += 1
total_fraction += (local_hazards[channel] / global_hazard)
current_marking += stoichiometry_matrix[channel, :]
event_freqs[channel] += 1
current_time += time_change
# Store result
if by_iteration:
time_array[i] = current_time
events[i-1] = channel
break
# If by run time, keep looping until next time point exceeded
events[i-1, channel] += 1
if current_time >= time_array[i]:
break
# Update marking array
marking_array[i, :] = current_marking
# Simulation finished - store data and return output.
output = gillespie_data.GillespieData()
output.times = time_array
output.markings = marking_array
output.event_freqs = event_freqs
output.iterations = i
output.events = events
return output