-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDS.py
211 lines (177 loc) · 5.55 KB
/
DS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
class Stack:
def __init__(self):
self.list = []
def push(self, item):
self.list.append(item)
def pop(self):
return self.list.pop()
def isEmpty(self):
return len(self.list) == 0
class Queue:
def __init__(self):
self.list = []
def push(self,item):
self.list.insert(0,item)
def pop(self):
return self.list.pop()
def isEmpty(self):
return len(self.list) == 0
class Heap:
def __init__(self, lis=[]):
self.list = [0]
self.length = 0
for el in lis:
self.insert(el)
def get_val(self, i):
if i<=self.length and i>0:
return self.list[i]
return None
def insert(self, val):
self.list.append(val)
self.length += 1
def delete_item(self, i):
popped = self.list.pop(i)
self.length -= 1
return popped
def parent(self, i):
if i <= self.length and i > 1:
par = int(i/2)
return (self.list[par], par)
else:
return None
def left(self, i):
if i <= self.length:
child_l = 2*i
if child_l <= self.length:
return (self.list[child_l], child_l)
return None
else:
return None
def right(self, i):
if i <= self.length:
child_r = 2*i + 1
if child_r <= self.length:
return (self.list[child_r], child_r)
return None
else:
return None
class MaxHeap(Heap):
def __init__(self, lis=[]):
super().__init__(lis)
def get_max(self):
return self.list[1]
def extract_max(self):
extracted = self.list[1]
self.list[1] = self.list[self.length]
self.list.pop(self.length)
self.length -= 1
self.max_heapify(1)
return extracted
def build_max_heap(self):
for i in range(int(self.length/2), 0, -1):
self.max_heapify(i)
def max_heapify(self, i):
par = self.get_val(i)
child_l = self.left(i)
child_r = self.right(i)
if child_l == None and child_r == None:
return
elif child_l != None and child_r == None:
if child_l[0] > par:
self.list[i] = child_l[0]
self.list[child_l[1]] = par
self.max_heapify(child_l[1])
elif child_r != None and child_l == None:
if child_r[0] > par:
self.list[i] = child_r[0]
self.list[child_r[1]] = par
self.max_heapify(child_r[1])
else:
if child_l[0] > child_r[0]:
if child_l[0] > par:
self.list[i] = child_l[0]
self.list[child_l[1]] = par
self.max_heapify(child_l[1])
else:
if child_r[0] > par:
self.list[i] = child_r[0]
self.list[child_r[1]] = par
self.max_heapify(child_r[1])
return
def insert(self, val):
super().insert(val)
par = self.parent(self.length)
while par != None:
self.max_heapify(par[1])
par = self.parent(par[1])
class MinHeap(Heap):
def __init__(self, lis=[]):
super().__init__(lis)
def get_min(self):
return self.list[1]
def extract_min(self):
extracted = self.list[1]
self.list[1] = self.list[self.length]
self.list.pop(self.length)
self.length -= 1
self.min_heapify(1)
return extracted
def build_min_heap(self):
for i in range(int(self.length/2), 0, -1):
self.min_heapify(i)
def min_heapify(self, i):
par = self.get_val(i)
child_l = self.left(i)
child_r = self.right(i)
if child_l == None and child_r == None:
return
elif child_l != None and child_r == None:
if child_l[0] < par:
self.list[i] = child_l[0]
self.list[child_l[1]] = par
self.min_heapify(child_l[1])
elif child_r != None and child_l == None:
if child_r[0] < par:
self.list[i] = child_r[0]
self.list[child_r[1]] = par
self.min_heapify(child_r[1])
else:
if child_l[0] < child_r[0]:
if child_l[0] < par:
self.list[i] = child_l[0]
self.list[child_l[1]] = par
self.min_heapify(child_l[1])
else:
if child_r[0] < par:
self.list[i] = child_r[0]
self.list[child_r[1]] = par
self.min_heapify(child_r[1])
return
def insert(self, val):
super().insert(val)
par = self.parent(self.length)
while par != None:
self.min_heapify(par[1])
par = self.parent(par[1])
class PriorityQueue(MinHeap):
def push(self, item, priority=0):
self.insert((priority, item))
def pop(self):
pop_it = self.extract_min()
return (pop_it[1], pop_it[0])
def isEmpty(self):
if self.length == 0:
return True
def update(self, item, priority):
pass
class PriorityQueueWithFunction(PriorityQueue):
def __init__(self, priority_function):
super().__init__()
self.priority_function = priority_function
def push(self, item):
priority = self.priority_function(item)
self.insert((priority, item))
class BST:
pass
class AVLTree(BST):
pass