-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathcurves.tex
6676 lines (6124 loc) · 260 KB
/
curves.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Algebraic Curves}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we develop some of the theory of algebraic curves.
A reference covering algebraic curves over the complex numbers is
the book \cite{ACGH}.
\medskip\noindent
What we already know. Besides general algebraic geometry, we
have already proved some specific results on algebraic curves.
Here is a list.
\begin{enumerate}
\item We have discussed affine opens of and ample invertible sheaves on
$1$ dimensional Noetherian schemes in
Varieties, Section \ref{varieties-section-dimension-one}.
\item We have seen a curve is either affine or projective
in Varieties, Section \ref{varieties-section-curves}.
\item We have discussed degrees of locally free modules on
proper curves in Varieties, Section \ref{varieties-section-divisors-curves}.
\item We have discussed the Picard scheme of a nonsingular projective
curve over an algebraically closed field in
Picard Schemes of Curves, Section \ref{pic-section-introduction}.
\end{enumerate}
\section{Curves and function fields}
\label{section-curves-function-fields}
\noindent
In this section we elaborate on the results of
Varieties, Section \ref{varieties-section-varieties-rational-maps}
in the case of curves.
\begin{lemma}
\label{lemma-extend-over-dvr}
Let $k$ be a field. Let $X$ be a curve and $Y$ a proper variety.
Let $U \subset X$ be a nonempty open and let $f : U \to Y$ be a morphism.
If $x \in X$ is a closed point such that $\mathcal{O}_{X, x}$
is a discrete valuation ring, then there exist an open
$U \subset U' \subset X$ containing $x$ and a morphism of
varieties $f' : U' \to Y$ extending $f$.
\end{lemma}
\begin{proof}
This is a special case of
Morphisms, Lemma \ref{morphisms-lemma-extend-across}.
\end{proof}
\begin{lemma}
\label{lemma-extend-over-normal-curve}
Let $k$ be a field. Let $X$ be a normal curve and $Y$ a proper variety.
The set of rational maps from $X$ to $Y$ is the same as the set
of morphisms $X \to Y$.
\end{lemma}
\begin{proof}
A rational map from $X$ to $Y$ can be extended to a morphism $X \to Y$
by Lemma \ref{lemma-extend-over-dvr}
as every local ring is a discrete valuation ring
(for example by Varieties, Lemma \ref{varieties-lemma-regular-point-on-curve}).
Conversely, if two morphisms $f,g: X \to Y$ are equivalent as rational maps,
then $f = g$ by Morphisms, Lemma \ref{morphisms-lemma-equality-of-morphisms}.
\end{proof}
\begin{lemma}
\label{lemma-flat}
Let $k$ be a field. Let $f : X \to Y$ be a nonconstant morphism
of curves over $k$. If $Y$ is normal, then $f$ is flat.
\end{lemma}
\begin{proof}
Pick $x \in X$ mapping to $y \in Y$. Then $\mathcal{O}_{Y, y}$ is either a
field or a discrete valuation ring
(Varieties, Lemma \ref{varieties-lemma-regular-point-on-curve}).
Since $f$ is nonconstant it is dominant (as it must map the
generic point of $X$ to the generic point of $Y$). This implies that
$\mathcal{O}_{Y, y} \to \mathcal{O}_{X, x}$ is injective
(Morphisms, Lemma \ref{morphisms-lemma-dominant-between-integral}).
Hence $\mathcal{O}_{X, x}$ is torsion free as a $\mathcal{O}_{Y, y}$-module
and therefore $\mathcal{O}_{X, x}$ is flat as a $\mathcal{O}_{Y, y}$-module
by More on Algebra, Lemma
\ref{more-algebra-lemma-valuation-ring-torsion-free-flat}.
\end{proof}
\begin{lemma}
\label{lemma-finite}
Let $k$ be a field. Let $f : X \to Y$ be a morphism of
schemes over $k$. Assume
\begin{enumerate}
\item $Y$ is separated over $k$,
\item $X$ is proper of dimension $\leq 1$ over $k$,
\item $f(Z)$ has at least two points for every irreducible
component $Z \subset X$ of dimension $1$.
\end{enumerate}
Then $f$ is finite.
\end{lemma}
\begin{proof}
The morphism $f$ is proper by
Morphisms, Lemma \ref{morphisms-lemma-image-proper-scheme-closed}.
Thus $f(X)$ is closed and images of closed points are closed.
Let $y \in Y$ be the image of a closed point in $X$.
Then $f^{-1}(\{y\})$ is a closed subset of $X$ not
containing any of the generic points of irreducible components
of dimension $1$ by condition (3). It follows that $f^{-1}(\{y\})$
is finite. Hence $f$ is finite over an open neighbourhood of $y$
by
More on Morphisms, Lemma
\ref{more-morphisms-lemma-proper-finite-fibre-finite-in-neighbourhood}
(if $Y$ is Noetherian, then you can use the easier
Cohomology of Schemes, Lemma
\ref{coherent-lemma-proper-finite-fibre-finite-in-neighbourhood}).
Since we've seen above that there are enough of these points
$y$, the proof is complete.
\end{proof}
\begin{lemma}
\label{lemma-extend-to-completion}
Let $k$ be a field. Let $X \to Y$ be a morphism of varieties
with $Y$ proper and $X$ a curve.
There exists a factorization $X \to \overline{X} \to Y$
where $X \to \overline{X}$ is an open immersion
and $\overline{X}$ is a projective curve.
\end{lemma}
\begin{proof}
This is clear from Lemma \ref{lemma-extend-over-dvr}
and Varieties, Lemma \ref{varieties-lemma-reduced-dim-1-projective-completion}.
\end{proof}
\noindent
Here is the main theorem of this section. We will say a morphism
$f : X \to Y$ of varieties is {\it constant} if the image $f(X)$
consists of a single point $y$ of $Y$. If this happens then
$y$ is a closed point of $Y$ (since the image of a closed point
of $X$ will be a closed point of $Y$).
\begin{theorem}
\label{theorem-curves-rational-maps}
Let $k$ be a field. The following categories are canonically equivalent
\begin{enumerate}
\item The category of finitely generated field extensions $K/k$ of
transcendence degree $1$.
\item The category of curves and dominant rational maps.
\item The category of normal projective curves and nonconstant morphisms.
\item The category of nonsingular projective curves and nonconstant morphisms.
\item The category of regular projective curves and nonconstant morphisms.
\item The category of normal proper curves and nonconstant morphisms.
\end{enumerate}
\end{theorem}
\begin{proof}
The equivalence between categories (1) and (2) is the restriction of the
equivalence of
Varieties, Theorem \ref{varieties-theorem-varieties-rational-maps}.
Namely, a variety is a curve if and only if its function field has
transcendence degree $1$, see for example
Varieties, Lemma \ref{varieties-lemma-dimension-locally-algebraic}.
\medskip\noindent
The categories in (3), (4), (5), and (6) are the same. First of all, the
terms ``regular'' and ``nonsingular'' are synonyms, see
Properties, Definition \ref{properties-definition-regular}.
Being normal and regular are the same thing for Noetherian
$1$-dimensional schemes
(Properties, Lemmas \ref{properties-lemma-regular-normal} and
\ref{properties-lemma-normal-dimension-1-regular}). See
Varieties, Lemma \ref{varieties-lemma-regular-point-on-curve}
for the case of curves. Thus (3) is the same as (5). Finally, (6)
is the same as (3) by
Varieties, Lemma \ref{varieties-lemma-dim-1-proper-projective}.
\medskip\noindent
If $f : X \to Y$ is a nonconstant morphism of nonsingular projective curves,
then $f$ sends the generic point $\eta$ of $X$ to the generic point $\xi$ of
$Y$. Hence we obtain a morphism
$k(Y) = \mathcal{O}_{Y, \xi} \to \mathcal{O}_{X, \eta} = k(X)$
in the category (1). If two morphisms $f,g: X \to Y$ gives the same morphism
$k(Y) \to k(X)$, then by the equivalence between (1) and (2),
$f$ and $g$ are equivalent as rational maps, so $f=g$ by
Lemma \ref{lemma-extend-over-normal-curve}.
Conversely, suppose that we have a map
$k(Y) \to k(X)$ in the category (1). Then we obtain a morphism $U \to Y$
for some nonempty open $U \subset X$. By Lemma \ref{lemma-extend-over-dvr}
this extends to all of $X$ and we obtain a morphism in the category (5).
Thus we see that there is a fully faithful functor (5)$\to$(1).
\medskip\noindent
To finish the proof we have to show that every $K/k$ in (1)
is the function field of a normal projective curve.
We already know that $K = k(X)$ for some curve $X$.
After replacing $X$ by its normalization
(which is a variety birational to $X$)
we may assume $X$ is normal
(Varieties, Lemma \ref{varieties-lemma-normalization-locally-algebraic}).
Then we choose $X \to \overline{X}$ with
$\overline{X} \setminus X = \{x_1, \ldots, x_n\}$ as in
Varieties, Lemma \ref{varieties-lemma-reduced-dim-1-projective-completion}.
Since $X$ is normal and since each
of the local rings $\mathcal{O}_{\overline{X}, x_i}$ is normal
we conclude that $\overline{X}$ is a normal projective curve as desired.
(Remark: We can also first compactify using
Varieties, Lemma \ref{varieties-lemma-dim-1-projective-completion}
and then normalize using
Varieties, Lemma \ref{varieties-lemma-normalization-locally-algebraic}.
Doing it this way we avoid using the somewhat tricky
Morphisms, Lemma \ref{morphisms-lemma-relative-normalization-normal-codim-1}.)
\end{proof}
\begin{definition}
\label{definition-normal-projective-model}
Let $k$ be a field. Let $X$ be a curve.
A {\it nonsingular projective model of $X$}
is a pair $(Y, \varphi)$ where $Y$ is a nonsingular projective
curve and $\varphi : k(X) \to k(Y)$ is an isomorphism
of function fields.
\end{definition}
\noindent
A nonsingular projective model is determined up to unique
isomorphism by Theorem \ref{theorem-curves-rational-maps}.
Thus we often say ``the nonsingular projective model''.
We usually drop $\varphi$ from the notation.
Warning: it needn't be the case that $Y$ is smooth over $k$
but Lemma \ref{lemma-nonsingular-model-smooth}
shows this can only happen in positive characteristic.
\begin{lemma}
\label{lemma-nonsingular-model-smooth}
Let $k$ be a field. Let $X$ be a curve and let $Y$ be the nonsingular
projective model of $X$. If $k$ is perfect, then $Y$ is a smooth
projective curve.
\end{lemma}
\begin{proof}
See Varieties, Lemma \ref{varieties-lemma-regular-point-on-curve}
for example.
\end{proof}
\begin{lemma}
\label{lemma-smooth-models}
Let $k$ be a field. Let $X$ be a geometrically irreducible curve over $k$.
For a field extension $K/k$ denote $Y_K$ a nonsingular projective model
of $(X_K)_{red}$.
\begin{enumerate}
\item If $X$ is proper, then $Y_K$ is the normalization of $X_K$.
\item There exists $K/k$ finite purely inseparable such that $Y_K$ is smooth.
\item Whenever $Y_K$ is smooth\footnote{Or even geometrically reduced.}
we have $H^0(Y_K, \mathcal{O}_{Y_K}) = K$.
\item Given a commutative diagram
$$
\xymatrix{
\Omega & K' \ar[l] \\
K \ar[u] & k \ar[l] \ar[u]
}
$$
of fields such that $Y_K$ and $Y_{K'}$ are smooth, then
$Y_\Omega = (Y_K)_\Omega = (Y_{K'})_\Omega$.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $X'$ be a nonsingular projective model of $X$. Then $X'$ and
$X$ have isomorphic nonempty open subschemes. In particular
$X'$ is geometrically irreducible as $X$ is (some details omitted).
Thus we may assume that $X$ is projective.
\medskip\noindent
Assume $X$ is proper. Then $X_K$ is proper and hence the normalization
$(X_K)^\nu$ is proper as a scheme finite over a proper scheme
(Varieties, Lemma \ref{varieties-lemma-normalization-locally-algebraic}
and Morphisms, Lemmas \ref{morphisms-lemma-finite-proper} and
\ref{morphisms-lemma-composition-proper}).
On the other hand, $X_K$ is irreducible as $X$ is geometrically
irreducible. Hence $X_K^\nu$ is proper, normal, irreducible, and birational
to $(X_K)_{red}$. This proves (1) because a proper curve is projective
(Varieties, Lemma \ref{varieties-lemma-dim-1-proper-projective}).
\medskip\noindent
Proof of (2). As $X$ is proper and we have (1), we can apply
Varieties, Lemma \ref{varieties-lemma-finite-extension-geometrically-normal}
to find $K/k$ finite purely inseparable such that
$Y_K$ is geometrically normal. Then $Y_K$ is geometrically regular
as normal and regular are the same for curves
(Properties, Lemma \ref{properties-lemma-normal-dimension-1-regular}).
Then $Y$ is a smooth variety by
Varieties, Lemma \ref{varieties-lemma-geometrically-regular-smooth}.
\medskip\noindent
If $Y_K$ is geometrically reduced, then $Y_K$ is geometrically
integral (Varieties, Lemma \ref{varieties-lemma-geometrically-integral})
and we see that $H^0(Y_K, \mathcal{O}_{Y_K}) = K$ by
Varieties, Lemma \ref{varieties-lemma-regular-functions-proper-variety}.
This proves (3) because a smooth variety is geometrically reduced
(even geometrically regular, see
Varieties, Lemma \ref{varieties-lemma-geometrically-regular-smooth}).
\medskip\noindent
If $Y_K$ is smooth, then for every extension $\Omega/K$
the base change $(Y_K)_\Omega$ is smooth over $\Omega$
(Morphisms, Lemma \ref{morphisms-lemma-base-change-smooth}).
Hence it is clear that $Y_\Omega = (Y_K)_\Omega$. This proves (4).
\end{proof}
\section{Linear series}
\label{section-linear-series}
\noindent
We deviate from the classical story
(see Remark \ref{remark-classical-linear-series})
by defining linear series in the following manner.
\begin{definition}
\label{definition-linear-series}
Let $k$ be a field. Let $X$ be a proper scheme of dimension $\leq 1$ over $k$.
Let $d \geq 0$ and $r \geq 0$.
A {\it linear series of degree $d$ and dimension $r$}
is a pair $(\mathcal{L}, V)$ where $\mathcal{L}$ is an
invertible $\mathcal{O}_X$-module of degree $d$
(Varieties, Definition \ref{varieties-definition-degree-invertible-sheaf})
and $V \subset H^0(X, \mathcal{L})$ is a $k$-subvector space
of dimension $r + 1$. We will abbreviate this by saying
$(\mathcal{L}, V)$ is a {\it $\mathfrak g^r_d$} on $X$.
\end{definition}
\noindent
We will mostly use this when $X$ is a nonsingular proper curve.
In fact, the definition above is just one way to generalize the
classical definition of a $\mathfrak g^r_d$. For example, if $X$
is a proper curve, then one can generalize linear series by allowing
$\mathcal{L}$ to be a torsion free coherent $\mathcal{O}_X$-module
of rank $1$. On a nonsingular curve every torsion free
coherent module is locally free, so this agrees with our
notion for nonsingular proper curves.
\medskip\noindent
The following lemma explains the geometric meaning of linear series
for proper nonsingular curves.
\begin{lemma}
\label{lemma-linear-series}
Let $k$ be a field. Let $X$ be a nonsingular proper curve over $k$.
Let $(\mathcal{L}, V)$ be a $\mathfrak g^r_d$ on $X$. Then
there exists a morphism
$$
\varphi : X \longrightarrow \mathbf{P}^r_k = \text{Proj}(k[T_0, \ldots, T_r])
$$
of varieties over $k$ and a map
$\alpha : \varphi^*\mathcal{O}_{\mathbf{P}^r_k}(1) \to \mathcal{L}$
such that $\varphi^*T_0, \ldots, \varphi^*T_r$
are sent to a basis of $V$ by $\alpha$.
\end{lemma}
\begin{proof}
Let $s_0, \ldots, s_r \in V$ be a $k$-basis. Since $X$ is nonsingular
the image $\mathcal{L}' \subset \mathcal{L}$ of the map
$s_0, \ldots, s_r : \mathcal{O}_X^{\oplus r + 1} \to \mathcal{L}$
is an invertible $\mathcal{O}_X$-module for example by
Divisors, Lemma \ref{divisors-lemma-torsion-free-over-regular-dim-1}.
Then we use
Constructions, Lemma \ref{constructions-lemma-projective-space}
to get a morphism
$$
\varphi = \varphi_{(\mathcal{L}', (s_0, \ldots, s_r))} :
X \longrightarrow \mathbf{P}^r_k
$$
as in the statement of the lemma.
\end{proof}
\begin{lemma}
\label{lemma-linear-series-trivial-existence}
Let $k$ be a field. Let $X$ be a proper scheme of dimension $\leq 1$ over $k$.
If $X$ has a $\mathfrak g^r_d$, then $X$ has a $\mathfrak g^s_d$ for
all $0 \leq s \leq r$.
\end{lemma}
\begin{proof}
This is true because a vector space $V$ of dimension $r + 1$
over $k$ has a linear subspace of dimension $s + 1$ for all
$0 \leq s \leq r$.
\end{proof}
\begin{lemma}
\label{lemma-g1d}
Let $k$ be a field. Let $X$ be a nonsingular proper curve over $k$.
Let $(\mathcal{L}, V)$ be a $\mathfrak g^1_d$ on $X$. Then the morphism
$\varphi : X \to \mathbf{P}^1_k$ of Lemma \ref{lemma-linear-series}
either
\begin{enumerate}
\item is nonconstant and has degree $\leq d$, or
\item factors through a closed point of $\mathbf{P}^1_k$ and in this
case $H^0(X, \mathcal{O}_X) \not = k$.
\end{enumerate}
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-linear-series} we see that
$\mathcal{L}' = \varphi^*\mathcal{O}_{\mathbf{P}^1_k}(1)$
has a nonzero map $\mathcal{L}' \to \mathcal{L}$.
Hence by Varieties, Lemma \ref{varieties-lemma-check-invertible-sheaf-trivial}
we see that $0 \leq \deg(\mathcal{L}') \leq d$.
If $\deg(\mathcal{L}') = 0$, then the same lemma tells us
$\mathcal{L}' \cong \mathcal{O}_X$ and since we have
two linearly independent sections we find we are in case (2).
If $\deg(\mathcal{L}') > 0$ then $\varphi$ is nonconstant (since the
pullback of an invertible module by a constant morphism is trivial).
Hence
$$
\deg(\mathcal{L}') =
\deg(X/\mathbf{P}^1_k) \deg(\mathcal{O}_{\mathbf{P}^1_k}(1))
$$
by Varieties, Lemma \ref{varieties-lemma-degree-pullback-map-proper-curves}.
This finishes the proof as the degree of
$\mathcal{O}_{\mathbf{P}^1_k}(1)$ is $1$.
\end{proof}
\begin{lemma}
\label{lemma-grd-inequalities}
Let $k$ be a field. Let $X$ be a proper curve over $k$ with
$H^0(X, \mathcal{O}_X) = k$. If $X$ has a $\mathfrak g^r_d$, then
$r \leq d$. If equality holds, then $H^1(X, \mathcal{O}_X) = 0$, i.e.,
the genus of $X$ (Definition \ref{definition-genus}) is $0$.
\end{lemma}
\begin{proof}
Let $(\mathcal{L}, V)$ be a $\mathfrak g^r_d$. Since this will only
increase $r$, we may assume $V = H^0(X, \mathcal{L})$. Choose a
nonzero element $s \in V$. Then the zero scheme of $s$ is an effective Cartier
divisor $D \subset X$, we have $\mathcal{L} = \mathcal{O}_X(D)$, and
we have a short exact sequence
$$
0 \to \mathcal{O}_X \to \mathcal{L} \to \mathcal{L}|_D \to 0
$$
see Divisors, Lemma \ref{divisors-lemma-characterize-OD} and
Remark \ref{divisors-remark-ses-regular-section}.
By Varieties, Lemma \ref{varieties-lemma-degree-effective-Cartier-divisor}
we have $\deg(D) = \deg(\mathcal{L}) = d$.
Since $D$ is an Artinian scheme we have
$\mathcal{L}|_D \cong \mathcal{O}_D$\footnote{In our case this
follows from Divisors, Lemma
\ref{divisors-lemma-finite-trivialize-invertible-upstairs}
as $D \to \Spec(k)$ is finite.}.
Thus
$$
\dim_k H^0(D, \mathcal{L}|_D) = \dim_k H^0(D, \mathcal{O}_D) = \deg(D) = d
$$
On the other hand, by assumption
$\dim_k H^0(X, \mathcal{O}_X) = 1$ and $\dim H^0(X, \mathcal{L}) = r + 1$.
We conclude that $r + 1 \leq 1 + d$, i.e., $r \leq d$ as in the lemma.
\medskip\noindent
Assume equality holds. Then
$H^0(X, \mathcal{L}) \to H^0(X, \mathcal{L}|_D)$ is surjective.
If we knew that $H^1(X, \mathcal{L})$ was zero, then we would
conclude that $H^1(X, \mathcal{O}_X)$ is zero by the long exact
cohomology sequence and the proof would
be complete. Our strategy will be to replace $\mathcal{L}$ by a
large power which has vanishing. As $\mathcal{L}|_D$ is the
trivial invertible module (see above), we can
find a section $t$ of $\mathcal{L}$ whose restriction
of $D$ generates $\mathcal{L}|_D$.
Consider the multiplication map
$$
\mu :
H^0(X, \mathcal{L}) \otimes_k H^0(X, \mathcal{L})
\longrightarrow
H^0(X, \mathcal{L}^{\otimes 2})
$$
and consider the short exact sequence
$$
0 \to \mathcal{L} \xrightarrow{s}
\mathcal{L}^{\otimes 2} \to \mathcal{L}^{\otimes 2}|_D \to 0
$$
Since $H^0(\mathcal{L}) \to H^0(\mathcal{L}|_D)$ is surjective and since
$t$ maps to a trivialization of $\mathcal{L}|_D$ we see that
$\mu(H^0(X, \mathcal{L}) \otimes t)$ gives a subspace of
$H^0(X, \mathcal{L}^{\otimes 2})$ surjecting onto the global sections of
$\mathcal{L}^{\otimes 2}|_D$. Thus we see that
$$
\dim H^0(X, \mathcal{L}^{\otimes 2}) = r + 1 + d = 2r + 1 =
\deg(\mathcal{L}^{\otimes 2}) + 1
$$
Ok, so $\mathcal{L}^{\otimes 2}$ has the same property as $\mathcal{L}$, i.e.,
that the dimension of the space of global sections is equal to the
degree plus one. Since $\mathcal{L}$ is ample
(Varieties, Lemma \ref{varieties-lemma-ample-curve})
there exists some $n_0$ such that $\mathcal{L}^{\otimes n}$
has vanishing $H^1$ for all $n \geq n_0$
(Cohomology of Schemes, Lemma \ref{coherent-lemma-coherent-proper-ample}).
Thus applying the argument above to $\mathcal{L}^{\otimes n}$
with $n = 2^m$ for some sufficiently large $m$ we conclude the
lemma is true.
\end{proof}
\begin{remark}[Classical definition]
\label{remark-classical-linear-series}
Let $X$ be a smooth projective curve over an algebraically closed field $k$.
We say two effective Cartier divisors $D, D' \subset X$ are
{\it linearly equivalent} if and only if
$\mathcal{O}_X(D) \cong \mathcal{O}_X(D')$ as $\mathcal{O}_X$-modules.
Since $\Pic(X) = \text{Cl}(X)$
(Divisors, Lemma \ref{divisors-lemma-local-rings-UFD-c1-bijective})
we see that $D$ and $D'$ are linearly equivalent
if and only if the Weil divisors associated to
$D$ and $D'$ define the same element of $\text{Cl}(X)$.
Given an effective Cartier divisor $D \subset X$ of degree $d$ the
{\it complete linear system} or {\it complete linear series} $|D|$ of $D$
is the set of effective Cartier divisors $E \subset X$
which are linearly equivalent to $D$.
Another way to say it is that $|D|$ is the set of closed
points of the fibre of the morphism
$$
\gamma_d :
\underline{\Hilbfunctor}^d_{X/k}
\longrightarrow
\underline{\Picardfunctor}^d_{X/k}
$$
(Picard Schemes of Curves, Lemma \ref{pic-lemma-picard-pieces})
over the closed point corresponding to $\mathcal{O}_X(D)$.
This gives $|D|$ a natural scheme structure and it
turns out that $|D| \cong \mathbf{P}^m_k$ with
$m + 1 = h^0(\mathcal{O}_X(D))$. In fact, more canonically we have
$$
|D| = \mathbf{P}(H^0(X, \mathcal{O}_X(D))^\vee)
$$
where $(-)^\vee$ indicates $k$-linear dual and $\mathbf{P}$ is as
in Constructions, Example \ref{constructions-example-projective-space}.
In this language a {\it linear system} or a {\it linear series} on
$X$ is a closed subvariety $L \subset |D|$ which can be cut out by
linear equations. If $L$ has dimension $r$, then $L = \mathbf{P}(V^\vee)$
where $V \subset H^0(X, \mathcal{O}_X(D))$ is a linear subspace
of dimension $r + 1$. Thus the classical linear series
$L \subset |D|$ corresponds to the linear series $(\mathcal{O}_X(D), V)$
as defined above.
\end{remark}
\section{Duality}
\label{section-duality}
\noindent
In this section we work out the consequences of the very general
material on dualizing complexes and duality for proper $1$-dimensional
schemes over fields. If you are interested in the analogous discussion
for higher dimension proper schemes over fields, see
Duality for Schemes, Section \ref{duality-section-duality-proper-over-field}.
\begin{lemma}
\label{lemma-duality-dim-1}
Let $X$ be a proper scheme of dimension $\leq 1$ over a field $k$.
There exists a dualizing complex $\omega_X^\bullet$ with the
following properties
\begin{enumerate}
\item $H^i(\omega_X^\bullet)$ is nonzero only for $i = -1, 0$,
\item $\omega_X = H^{-1}(\omega_X^\bullet)$
is a coherent Cohen-Macaulay module whose support is the
irreducible components of dimension $1$,
\item for $x \in X$ closed, the module $H^0(\omega_{X, x}^\bullet)$
is nonzero if and only if either
\begin{enumerate}
\item $\dim(\mathcal{O}_{X, x}) = 0$ or
\item $\dim(\mathcal{O}_{X, x}) = 1$
and $\mathcal{O}_{X, x}$ is not Cohen-Macaulay,
\end{enumerate}
\item for $K \in D_\QCoh(\mathcal{O}_X)$ there are functorial
isomorphisms\footnote{This property
characterizes $\omega_X^\bullet$ in $D_\QCoh(\mathcal{O}_X)$
up to unique isomorphism by the Yoneda lemma. Since $\omega_X^\bullet$
is in $D^b_{\textit{Coh}}(\mathcal{O}_X)$ in fact it suffices to consider
$K \in D^b_{\textit{Coh}}(\mathcal{O}_X)$.}
$$
\Ext^i_X(K, \omega_X^\bullet) = \Hom_k(H^{-i}(X, K), k)
$$
compatible with shifts and distinguished triangles,
\item there are functorial isomorphisms
$\Hom(\mathcal{F}, \omega_X) = \Hom_k(H^1(X, \mathcal{F}), k)$
for $\mathcal{F}$ quasi-coherent on $X$,
\item if $X \to \Spec(k)$ is smooth of relative dimension $1$,
then $\omega_X \cong \Omega_{X/k}$.
\end{enumerate}
\end{lemma}
\begin{proof}
Denote $f : X \to \Spec(k)$ the structure morphism.
We start with the relative dualizing complex
$$
\omega_X^\bullet = \omega_{X/k}^\bullet = a(\mathcal{O}_{\Spec(k)})
$$
as described in Duality for Schemes,
Remark \ref{duality-remark-relative-dualizing-complex}.
Then property (4) holds by construction as $a$ is the right
adjoint for $f_* : D_\QCoh(\mathcal{O}_X) \to D(\mathcal{O}_{\Spec(k)})$.
Since $f$ is proper we have
$f^!(\mathcal{O}_{\Spec(k)}) = a(\mathcal{O}_{\Spec(k)})$ by
definition, see
Duality for Schemes, Section \ref{duality-section-upper-shriek}.
Hence $\omega_X^\bullet$ and $\omega_X$ are as in
Duality for Schemes, Example \ref{duality-example-proper-over-local}
and as in
Duality for Schemes, Example \ref{duality-example-equidimensional-over-field}.
Parts (1) and (2) follow from
Duality for Schemes, Lemma \ref{duality-lemma-vanishing-good-dualizing}.
For a closed point $x \in X$ we see that $\omega_{X, x}^\bullet$ is a
normalized dualizing complex over $\mathcal{O}_{X, x}$, see
Duality for Schemes, Lemma \ref{duality-lemma-good-dualizing-normalized}.
Assertion (3) then follows from
Dualizing Complexes, Lemma \ref{dualizing-lemma-apply-CM}.
Assertion (5) follows from
Duality for Schemes, Lemma \ref{duality-lemma-dualizing-module-proper-over-A}
for coherent $\mathcal{F}$ and in general by unwinding
(4) for $K = \mathcal{F}[0]$ and $i = -1$.
Assertion (6) follows from Duality for Schemes,
Lemma \ref{duality-lemma-smooth-proper}.
\end{proof}
\begin{lemma}
\label{lemma-duality-dim-1-CM}
Let $X$ be a proper scheme over a field $k$ which is Cohen-Macaulay
and equidimensional of dimension $1$. The module $\omega_X$
of Lemma \ref{lemma-duality-dim-1} has the following properties
\begin{enumerate}
\item $\omega_X$ is a dualizing module on $X$
(Duality for Schemes, Section \ref{duality-section-dualizing-module}),
\item $\omega_X$ is a coherent Cohen-Macaulay module whose support is $X$,
\item there are functorial isomorphisms
$\Ext^i_X(K, \omega_X[1]) = \Hom_k(H^{-i}(X, K), k)$
compatible with shifts for $K \in D_\QCoh(X)$,
\item there are functorial isomorphisms
$\Ext^{1 + i}(\mathcal{F}, \omega_X) = \Hom_k(H^{-i}(X, \mathcal{F}), k)$
for $\mathcal{F}$ quasi-coherent on $X$.
\end{enumerate}
\end{lemma}
\begin{proof}
Recall from the proof of Lemma \ref{lemma-duality-dim-1}
that $\omega_X$ is as in Duality for Schemes, Example
\ref{duality-example-proper-over-local} and hence is
a dualizing module. The other statements follow from
Lemma \ref{lemma-duality-dim-1}
and the fact that $\omega_X^\bullet = \omega_X[1]$
as $X$ is Cohen-Macualay (Duality for Schemes, Lemma
\ref{duality-lemma-dualizing-module-CM-scheme}).
\end{proof}
\begin{remark}
\label{remark-rework-duality-locally-free}
Let $X$ be a proper scheme of dimension $\leq 1$ over a field $k$.
Let $\omega_X^\bullet$ and $\omega_X$ be as in Lemma \ref{lemma-duality-dim-1}.
If $\mathcal{E}$ is a finite locally free $\mathcal{O}_X$-module
with dual $\mathcal{E}^\vee$ then we have canonical isomorphisms
$$
\Hom_k(H^{-i}(X, \mathcal{E}), k) =
H^i(X, \mathcal{E}^\vee \otimes_{\mathcal{O}_X}^\mathbf{L} \omega_X^\bullet)
$$
This follows from the lemma and
Cohomology, Lemma \ref{cohomology-lemma-dual-perfect-complex}.
If $X$ is Cohen-Macaulay and equidimensional of dimension $1$, then
we have canonical isomorphisms
$$
\Hom_k(H^{-i}(X, \mathcal{E}), k) =
H^{1 + i}(X, \mathcal{E}^\vee \otimes_{\mathcal{O}_X} \omega_X)
$$
by Lemma \ref{lemma-duality-dim-1-CM}. In particular
if $\mathcal{L}$ is an invertible $\mathcal{O}_X$-module, then we have
$$
\dim_k H^0(X, \mathcal{L}) =
\dim_k H^1(X, \mathcal{L}^{\otimes -1} \otimes_{\mathcal{O}_X} \omega_X)
$$
and
$$
\dim_k H^1(X, \mathcal{L}) =
\dim_k H^0(X, \mathcal{L}^{\otimes -1} \otimes_{\mathcal{O}_X} \omega_X)
$$
\end{remark}
\noindent
Here is a sanity check for the dualizing complex.
\begin{lemma}
\label{lemma-sanity-check-duality}
Let $X$ be a proper scheme of dimension $\leq 1$ over a field $k$.
Let $\omega_X^\bullet$ and $\omega_X$ be as in Lemma \ref{lemma-duality-dim-1}.
\begin{enumerate}
\item If $X \to \Spec(k)$ factors as $X \to \Spec(k') \to \Spec(k)$
for some field $k'$, then $\omega_X^\bullet$ and $\omega_X$
satisfy properties (4), (5), (6) with $k$ replaced with $k'$.
\item If $K/k$ is a field extension, then the pullback of
$\omega_X^\bullet$ and $\omega_X$ to the base change $X_K$
are as in Lemma \ref{lemma-duality-dim-1} for the morphism
$X_K \to \Spec(K)$.
\end{enumerate}
\end{lemma}
\begin{proof}
Denote $f : X \to \Spec(k)$ the structure morphism.
Assertion (1) really means that $\omega_X^\bullet$ and $\omega_X$
are as in Lemma \ref{lemma-duality-dim-1} for the morphism
$f' : X \to \Spec(k')$. In the proof of Lemma \ref{lemma-duality-dim-1}
we took $\omega_X^\bullet = a(\mathcal{O}_{\Spec(k)})$
where $a$ be is the right adjoint of
Duality for Schemes, Lemma
\ref{duality-lemma-twisted-inverse-image} for $f$.
Thus we have to show
$a(\mathcal{O}_{\Spec(k)}) \cong a'(\mathcal{O}_{\Spec(k)})$
where $a'$ be is the right adjoint of
Duality for Schemes, Lemma
\ref{duality-lemma-twisted-inverse-image} for $f'$.
Since $k' \subset H^0(X, \mathcal{O}_X)$ we see that $k'/k$ is a finite
extension (Cohomology of Schemes, Lemma
\ref{coherent-lemma-proper-over-affine-cohomology-finite}).
By uniqueness of adjoints we have $a = a' \circ b$ where
$b$ is the right adjoint of Duality for Schemes, Lemma
\ref{duality-lemma-twisted-inverse-image} for $g : \Spec(k') \to \Spec(k)$.
Another way to say this: we have $f^! = (f')^! \circ g^!$.
Thus it suffices to show that $\Hom_k(k', k) \cong k'$ as
$k'$-modules, see Duality for Schemes, Example
\ref{duality-example-affine-twisted-inverse-image}.
This holds because these are $k'$-vector spaces of
the same dimension (namely dimension $1$).
\medskip\noindent
Proof of (2). This holds because we have base change for $a$ by
Duality for Schemes, Lemma \ref{duality-lemma-more-base-change}.
See discussion in Duality for Schemes, Remark
\ref{duality-remark-relative-dualizing-complex}.
\end{proof}
\begin{lemma}
\label{lemma-closed-immersion-dim-1-CM}
Let $X$ be a proper scheme of dimension $\leq 1$ over a field $k$.
Let $i : Y \to X$ be a closed immersion.
Let $\omega_X^\bullet$, $\omega_X$, $\omega_Y^\bullet$, $\omega_Y$
be as in Lemma \ref{lemma-duality-dim-1}. Then
\begin{enumerate}
\item $\omega_Y^\bullet = R\SheafHom(\mathcal{O}_Y, \omega_X^\bullet)$,
\item $\omega_Y = \SheafHom(\mathcal{O}_Y, \omega_X)$ and
$i_*\omega_Y = \SheafHom_{\mathcal{O}_X}(i_*\mathcal{O}_Y, \omega_X)$.
\end{enumerate}
\end{lemma}
\begin{proof}
Denote $g : Y \to \Spec(k)$ and $f : X \to \Spec(k)$ the structure morphisms.
Then $g = f \circ i$. Denote $a, b, c$ the right adjoint of
Duality for Schemes, Lemma
\ref{duality-lemma-twisted-inverse-image} for $f, g, i$.
Then $b = c \circ a$ by uniqueness of right adjoints
and because $Rg_* = Rf_* \circ Ri_*$.
In the proof of Lemma \ref{lemma-duality-dim-1}
we set
$\omega_X^\bullet = a(\mathcal{O}_{\Spec(k)})$ and
$\omega_Y^\bullet = b(\mathcal{O}_{\Spec(k)})$.
Hence $\omega_Y^\bullet = c(\omega_X^\bullet)$
which implies (1) by Duality for Schemes, Lemma
\ref{duality-lemma-twisted-inverse-image-closed}.
Since $\omega_X = H^{-1}(\omega_X^\bullet)$ and
$\omega_Y = H^{-1}(\omega_Y^\bullet)$ we conclude that
$\omega_Y = \SheafHom(\mathcal{O}_Y, \omega_X)$.
This implies
$i_*\omega_Y = \SheafHom_{\mathcal{O}_X}(i_*\mathcal{O}_Y, \omega_X)$
by Duality for Schemes, Lemma
\ref{duality-lemma-sheaf-with-exact-support-ext}.
\end{proof}
\begin{lemma}
\label{lemma-closed-subscheme-reduced-gorenstein}
Let $X$ be a proper scheme over a field $k$ which is
Gorenstein, reduced, and equidimensional of dimension $1$.
Let $i : Y \to X$ be a reduced closed subscheme equidimensional
of dimension $1$. Let $j : Z \to X$ be the scheme theoretic
closure of $X \setminus Y$. Then
\begin{enumerate}
\item $Y$ and $Z$ are Cohen-Macaulay,
\item if $\mathcal{I} \subset \mathcal{O}_X$,
resp.\ $\mathcal{J} \subset \mathcal{O}_X$ is the ideal sheaf of
$Y$, resp.\ $Z$ in $X$, then
$$
\mathcal{I} = i_*\mathcal{I}'
\quad\text{and}\quad
\mathcal{J} = j_*\mathcal{J}'
$$
where $\mathcal{I}' \subset \mathcal{O}_Z$,
resp.\ $\mathcal{J}' \subset \mathcal{O}_Y$ is the ideal sheaf
of $Y \cap Z$ in $Z$, resp.\ $Y$,
\item $\omega_Y = \mathcal{J}'(i^*\omega_X)$ and
$i_*(\omega_Y) = \mathcal{J}\omega_X$,
\item $\omega_Z = \mathcal{I}'(i^*\omega_X)$ and
$i_*(\omega_Z) = \mathcal{I}\omega_X$,
\item we have the following short exact sequences
\begin{align*}
0 \to \omega_X \to i_*i^*\omega_X \oplus j_*j^*\omega_X \to
\mathcal{O}_{Y \cap Z} \to 0 \\
0 \to i_*\omega_Y \to \omega_X \to j_*j^*\omega_X \to 0 \\
0 \to j_*\omega_Z \to \omega_X \to i_*i^*\omega_X \to 0 \\
0 \to i_*\omega_Y \oplus j_*\omega_Z \to \omega_X \to
\mathcal{O}_{Y \cap Z} \to 0 \\
0 \to \omega_Y \to i^*\omega_X \to \mathcal{O}_{Y \cap Z} \to 0 \\
0 \to \omega_Z \to j^*\omega_X \to \mathcal{O}_{Y \cap Z} \to 0
\end{align*}
\end{enumerate}
Here $\omega_X$, $\omega_Y$, $\omega_Z$ are as in
Lemma \ref{lemma-duality-dim-1}.
\end{lemma}
\begin{proof}
A reduced $1$-dimensional Noetherian scheme is Cohen-Macaulay, so
(1) is true. Since $X$ is reduced, we see that $X = Y \cup Z$
scheme theoretically. With notation as in
Morphisms, Lemma \ref{morphisms-lemma-scheme-theoretic-union}
and by the statement of that lemma
we have a short exact sequence
$$
0 \to \mathcal{O}_X \to
\mathcal{O}_Y \oplus \mathcal{O}_Z \to \mathcal{O}_{Y \cap Z} \to 0
$$
Since $\mathcal{J} = \Ker(\mathcal{O}_X \to \mathcal{O}_Z)$,
$\mathcal{J}' = \Ker(\mathcal{O}_Y \to \mathcal{O}_{Y \cap Z})$,
$\mathcal{I} = \Ker(\mathcal{O}_X \to \mathcal{O}_Y)$, and
$\mathcal{I}' = \Ker(\mathcal{O}_Z \to \mathcal{O}_{Y \cap Z})$
a diagram chase implies (2).
Observe that $\mathcal{I} + \mathcal{J}$ is the ideal sheaf
of $Y \cap Z$ and that $\mathcal{I} \cap \mathcal{J} = 0$.
Hence we have the following exact sequences
\begin{align*}
0 \to \mathcal{O}_X \to \mathcal{O}_Y \oplus \mathcal{O}_Z \to
\mathcal{O}_{Y \cap Z} \to 0 \\
0 \to \mathcal{J} \to \mathcal{O}_X \to \mathcal{O}_Z \to 0 \\
0 \to \mathcal{I} \to \mathcal{O}_X \to \mathcal{O}_Y \to 0 \\
0 \to \mathcal{J} \oplus \mathcal{I} \to \mathcal{O}_X \to
\mathcal{O}_{Y \cap Z} \to 0 \\
0 \to \mathcal{J}' \to \mathcal{O}_Y \to \mathcal{O}_{Y \cap Z} \to 0 \\
0 \to \mathcal{I}' \to \mathcal{O}_Z \to \mathcal{O}_{Y \cap Z} \to 0
\end{align*}
Since $X$ is Gorenstein $\omega_X$ is an invertible $\mathcal{O}_X$-module
(Duality for Schemes, Lemma \ref{duality-lemma-gorenstein}).
Since $Y \cap Z$ has dimension $0$ we have
$\omega_X|_{Y \cap Z} \cong \mathcal{O}_{Y \cap Z}$.
Thus if we prove (3) and (4), then we obtain the short exact
sequences of the lemma by tensoring the above
short exact sequence with the invertible module $\omega_X$.
By symmetry it suffices to prove (3) and by
(2) it suffices to prove $i_*(\omega_Y) = \mathcal{J}\omega_X$.
\medskip\noindent
We have
$i_*\omega_Y = \SheafHom_{\mathcal{O}_X}(i_*\mathcal{O}_Y, \omega_X)$
by Lemma \ref{lemma-closed-immersion-dim-1-CM}.
Again using that $\omega_X$ is invertible
we finally conclude that it suffices to show
$\SheafHom_{\mathcal{O}_X}(\mathcal{O}_X/\mathcal{I}, \mathcal{O}_X)$
maps isomorphically to $\mathcal{J}$ by evaluation at $1$.
In other words, that $\mathcal{J}$ is the annihilator of
$\mathcal{I}$. This follows from the above.
\end{proof}
\section{Riemann-Roch}
\label{section-Riemann-Roch}
\noindent
Let $k$ be a field. Let $X$ be a proper scheme of dimension $\leq 1$
over $k$. In Varieties, Section \ref{varieties-section-divisors-curves}
we have defined the degree of a locally free $\mathcal{O}_X$-module
$\mathcal{E}$ of constant rank by the formula
\begin{equation}
\label{equation-degree}
\deg(\mathcal{E}) =
\chi(X, \mathcal{E}) - \text{rank}(\mathcal{E})\chi(X, \mathcal{O}_X)
\end{equation}
see Varieties, Definition \ref{varieties-definition-degree-invertible-sheaf}.
In the chapter on Chow Homology we defined the first Chern class of
$\mathcal{E}$ as an operation on cycles
(Chow Homology, Section
\ref{chow-section-intersecting-chern-classes}) and we proved that
\begin{equation}
\label{equation-degree-c1}
\deg(\mathcal{E}) = \deg(c_1(\mathcal{E}) \cap [X]_1)
\end{equation}
see Chow Homology, Lemma \ref{chow-lemma-degree-vector-bundle}.
Combining (\ref{equation-degree}) and (\ref{equation-degree-c1})
we obtain our first version of the Riemann-Roch formula
\begin{equation}
\label{equation-rr}
\chi(X, \mathcal{E}) =
\deg(c_1(\mathcal{E}) \cap [X]_1) +
\text{rank}(\mathcal{E})\chi(X, \mathcal{O}_X)
\end{equation}
If $\mathcal{L}$ is an invertible $\mathcal{O}_X$-module, then
we can also consider the numerical intersection
$(\mathcal{L} \cdot X)$ as defined in
Varieties, Definition \ref{varieties-definition-intersection-number}.
However, this does not give anything new as
\begin{equation}
\label{equation-numerical-degree}
(\mathcal{L} \cdot X) = \deg(\mathcal{L})
\end{equation}
by Varieties, Lemma
\ref{varieties-lemma-intersection-numbers-and-degrees-on-curves}. If
$\mathcal{L}$ is ample, then this integer is positive and is
called the degree
\begin{equation}
\label{equation-degree-X}
\deg_\mathcal{L}(X) = (\mathcal{L} \cdot X) = \deg(\mathcal{L})
\end{equation}
of $X$ with respect to $\mathcal{L}$, see
Varieties, Definition \ref{varieties-definition-degree}.
\medskip\noindent
To obtain a true Riemann-Roch theorem we would like to write
$\chi(X, \mathcal{O}_X)$ as the degree of a canonical zero cycle on $X$.
We refer to \cite{F} for a fully general version of this. We will use
duality to get a formula in the case where $X$ is Gorenstein; however,
in some sense this is a cheat (for example because this method cannot
work in higher dimension).
\medskip\noindent
We first use Lemmas \ref{lemma-duality-dim-1} and \ref{lemma-duality-dim-1-CM}
to get a relation between the euler
characteristic of $\mathcal{O}_X$ and the euler characteristic
of the dualizing complex or the dualizing module.
\begin{lemma}
\label{lemma-euler}
Let $X$ be a proper scheme of dimension $\leq 1$ over a field $k$.
With $\omega_X^\bullet$ and $\omega_X$ as in Lemma \ref{lemma-duality-dim-1}
we have
$$
\chi(X, \mathcal{O}_X) = \chi(X, \omega_X^\bullet)
$$
If $X$ is Cohen-Macaulay and equidimensional of dimension $1$, then
$$
\chi(X, \mathcal{O}_X) = - \chi(X, \omega_X)
$$
\end{lemma}
\begin{proof}
We define the right hand side of the first formula as follows:
$$
\chi(X, \omega_X^\bullet) =
\sum\nolimits_{i \in \mathbf{Z}} (-1)^i\dim_k H^i(X, \omega_X^\bullet)
$$
This is well defined because $\omega_X^\bullet$ is in
$D^b_{\textit{Coh}}(\mathcal{O}_X)$, but also because
$$
H^i(X, \omega_X^\bullet) =
\Ext^i(\mathcal{O}_X, \omega_X^\bullet) =
H^{-i}(X, \mathcal{O}_X)
$$
which is always finite dimensional and nonzero only if $i = 0, -1$.
This of course also proves the first formula. The second is a consequence
of the first because $\omega_X^\bullet = \omega_X[1]$ in the CM case, see
Lemma \ref{lemma-duality-dim-1-CM}.
\end{proof}
\noindent
We will use Lemma \ref{lemma-euler} to get the desired formula for
$\chi(X, \mathcal{O}_X)$ in the case that $\omega_X$ is
invertible, i.e., that $X$ is Gorenstein.
The statement is that $-1/2$ of the first Chern class of $\omega_X$
capped with the cycle $[X]_1$ associated to $X$ is a natural zero
cycle on $X$ with half-integer coefficients whose degree is
$\chi(X, \mathcal{O}_X)$.
The occurrence of fractions in the statement of Riemann-Roch cannot
be avoided.
\begin{lemma}[Riemann-Roch]