-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathduality.tex
9229 lines (8535 loc) · 344 KB
/
duality.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Duality for Schemes}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This chapter studies relative duality for morphisms of schemes
and the dualizing complex on a scheme. A reference is \cite{RD}.
\medskip\noindent
Dualizing complexes for Noetherian rings were defined and studied in
Dualizing Complexes, Section \ref{dualizing-section-dualizing} ff.
In this chapter we continue this by studying dualizing complexes on
schemes, see Section \ref{section-dualizing-schemes}.
\medskip\noindent
The bulk of this chapter is devoted to studying the right adjoint
of pushforward in the setting of derived categories of sheaves
of modules with quasi-coherent cohomology sheaves.
See Sections
\ref{section-twisted-inverse-image},
\ref{section-restriction-to-opens},
\ref{section-base-change-map},
\ref{section-base-change-II},
\ref{section-trace},
\ref{section-compare-with-pullback},
\ref{section-sections-with-exact-support},
\ref{section-duality-finite},
\ref{section-perfect-proper},
\ref{section-dualizing-Cartier}, and
\ref{section-examples}.
Here we follow the papers
\cite{Neeman-Grothendieck}, \cite{LN},
\cite{Lipman-notes}, and \cite{Neeman-improvement}.
\medskip\noindent
We discuss the important and useful upper shriek functors $f^!$ for
separated morphisms of finite type between Noetherian schemes in
Sections \ref{section-upper-shriek},
\ref{section-upper-shriek-properties}, and
\ref{section-base-change-shriek}
culminating in the overview Section
\ref{section-duality}.
\medskip\noindent
In Section \ref{section-glue}
we explain alternative theory of duality and dualizing
complexes when working over a fixed locally Noetherian
base endowed with a dualizing complex (this section corresponds
to a remark in Hartshorne's book).
\medskip\noindent
In the remaining sections we give a few applications.
\medskip\noindent
This chapter is continued by the chapter on duality
on algebraic spaces, see
Duality for Spaces, Section \ref{spaces-duality-section-introduction}.
\section{Dualizing complexes on schemes}
\label{section-dualizing-schemes}
\noindent
We define a dualizing complex on a locally Noetherian scheme
to be a complex which affine locally comes from a dualizing
complex on the corresponding ring. This is not completely
standard but agrees with all definitions in the literature
on Noetherian schemes of finite dimension.
\begin{lemma}
\label{lemma-equivalent-definitions}
Let $X$ be a locally Noetherian scheme. Let $K$ be an object of
$D(\mathcal{O}_X)$. The following are equivalent
\begin{enumerate}
\item For every affine open $U = \Spec(A) \subset X$ there exists
a dualizing complex $\omega_A^\bullet$ for $A$ such that
$K|_U$ is isomorphic to the image of $\omega_A^\bullet$ by
the functor $\widetilde{} : D(A) \to D(\mathcal{O}_U)$.
\item There is an affine open covering $X = \bigcup U_i$, $U_i = \Spec(A_i)$
such that for each $i$ there exists a dualizing complex $\omega_i^\bullet$ for
$A_i$ such that $K|_{U_i}$ is isomorphic to the image of $\omega_i^\bullet$ by
the functor $\widetilde{} : D(A_i) \to D(\mathcal{O}_{U_i})$.
\end{enumerate}
\end{lemma}
\begin{proof}
Assume (2) and let $U = \Spec(A)$ be an affine open of $X$.
Since condition (2) implies that $K$ is in $D_\QCoh(\mathcal{O}_X)$
we find an object $\omega_A^\bullet$ in $D(A)$ whose associated
complex of quasi-coherent sheaves is isomorphic to $K|_U$, see
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-affine-compare-bounded}.
We will show that $\omega_A^\bullet$ is a dualizing complex for $A$
which will finish the proof.
\medskip\noindent
Since $X = \bigcup U_i$ is an open covering, we can find a standard
open covering $U = D(f_1) \cup \ldots \cup D(f_m)$ such that
each $D(f_j)$ is a standard open in one of the affine opens $U_i$, see
Schemes, Lemma \ref{schemes-lemma-standard-open-two-affines}.
Say $D(f_j) = D(g_j)$ for $g_j \in A_{i_j}$.
Then $A_{f_j} \cong (A_{i_j})_{g_j}$ and we have
$$
(\omega_A^\bullet)_{f_j} \cong (\omega_i^\bullet)_{g_j}
$$
in the derived category by
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-affine-compare-bounded}.
By Dualizing Complexes, Lemma \ref{dualizing-lemma-dualizing-localize}
we find that
the complex $(\omega_A^\bullet)_{f_j}$ is a dualizing complex over
$A_{f_j}$ for $j = 1, \ldots, m$. This implies that $\omega_A^\bullet$
is dualizing by
Dualizing Complexes, Lemma \ref{dualizing-lemma-dualizing-glue}.
\end{proof}
\begin{definition}
\label{definition-dualizing-scheme}
Let $X$ be a locally Noetherian scheme. An object $K$ of
$D(\mathcal{O}_X)$ is called a {\it dualizing complex} if
$K$ satisfies the equivalent conditions of
Lemma \ref{lemma-equivalent-definitions}.
\end{definition}
\noindent
Please see remarks made at the beginning of this section.
\begin{lemma}
\label{lemma-affine-duality}
Let $A$ be a Noetherian ring and let $X = \Spec(A)$. Let $K, L$ be objects
of $D(A)$. If $K \in D_{\textit{Coh}}(A)$ and $L$ has finite injective
dimension, then
$$
R\SheafHom_{\mathcal{O}_X}(\widetilde{K}, \widetilde{L})
=
\widetilde{R\Hom_A(K, L)}
$$
in $D(\mathcal{O}_X)$.
\end{lemma}
\begin{proof}
We may assume that $L$ is given by a finite complex $I^\bullet$
of injective $A$-modules. By induction on the length of $I^\bullet$
and compatibility of the constructions with distinguished triangles,
we reduce to the case that $L = I[0]$ where $I$ is an injective $A$-module.
In this case, Derived Categories of Schemes, Lemma
\ref{perfect-lemma-quasi-coherence-internal-hom}, tells us that
the $n$th cohomology sheaf of
$R\SheafHom_{\mathcal{O}_X}(\widetilde{K}, \widetilde{L})$
is the sheaf associated to the presheaf
$$
D(f) \longmapsto \Ext^n_{A_f}(K \otimes_A A_f, I \otimes_A A_f)
$$
Since $A$ is Noetherian, the $A_f$-module $I \otimes_A A_f$ is injective
(Dualizing Complexes, Lemma
\ref{dualizing-lemma-localization-injective-modules}). Hence we see that
\begin{align*}
\Ext^n_{A_f}(K \otimes_A A_f, I \otimes_A A_f)
& =
\Hom_{A_f}(H^{-n}(K \otimes_A A_f), I \otimes_A A_f) \\
& =
\Hom_{A_f}(H^{-n}(K) \otimes_A A_f, I \otimes_A A_f) \\
& =
\Hom_A(H^{-n}(K), I) \otimes_A A_f
\end{align*}
The last equality because $H^{-n}(K)$ is a finite $A$-module, see
Algebra, Lemma \ref{algebra-lemma-hom-from-finitely-presented}.
This proves that the canonical map
$$
\widetilde{R\Hom_A(K, L)}
\longrightarrow
R\SheafHom_{\mathcal{O}_X}(\widetilde{K}, \widetilde{L})
$$
is a quasi-isomorphism in this case and the proof is done.
\end{proof}
\begin{lemma}
\label{lemma-internal-hom-evaluate-isom}
Let $X$ be a Noetherian scheme. Let $K, L, M \in D_\QCoh(\mathcal{O}_X)$.
Then the map
$$
R\SheafHom(L, M) \otimes_{\mathcal{O}_X}^\mathbf{L} K
\longrightarrow
R\SheafHom(R\SheafHom(K, L), M)
$$
of Cohomology, Lemma \ref{cohomology-lemma-internal-hom-evaluate}
is an isomorphism in the following two cases
\begin{enumerate}
\item $K \in D^-_{\textit{Coh}}(\mathcal{O}_X)$,
$L \in D^+_{\textit{Coh}}(\mathcal{O}_X)$, and $M$ affine locally has
finite injective dimension (see proof), or
\item $K$ and $L$ are in $D_{\textit{Coh}}(\mathcal{O}_X)$,
the object $R\SheafHom(L, M)$ has finite tor dimension, and
$L$ and $M$ affine locally have finite injective dimension
(in particular $L$ and $M$ are bounded).
\end{enumerate}
\end{lemma}
\begin{proof}
Proof of (1). We say $M$ has affine locally finite injective dimension
if $X$ has an open covering by affines $U = \Spec(A)$ such that the object
of $D(A)$ corresponding to $M|_U$ (Derived Categories of Schemes, Lemma
\ref{perfect-lemma-affine-compare-bounded})
has finite injective dimension\footnote{This condition is independent of the
choice of the affine open cover of the Noetherian scheme $X$.
Details omitted.}. To prove the lemma we may
replace $X$ by $U$, i.e., we may assume $X = \Spec(A)$
for some Noetherian ring $A$. Observe that
$R\SheafHom(K, L)$ is in $D^+_{\textit{Coh}}(\mathcal{O}_X)$ by
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-coherent-internal-hom}.
Moreover, the formation of the left and right hand side
of the arrow commutes with the functor $D(A) \to D_\QCoh(\mathcal{O}_X)$ by
Lemma \ref{lemma-affine-duality} and
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-quasi-coherence-internal-hom}
(to be sure this uses the assumptions on $K$, $L$, $M$ and what we just
proved about $R\SheafHom(K, L)$).
Then finally the arrow is an isomorphism by
More on Algebra, Lemmas
\ref{more-algebra-lemma-internal-hom-evaluate-isomorphism} part (2).
\medskip\noindent
Proof of (2). We argue as above. A small change is that here we get
$R\SheafHom(K, L)$ in $D_{\textit{Coh}}(\mathcal{O}_X)$ because
affine locally (which is allowable by Lemma \ref{lemma-affine-duality})
we may appeal to Dualizing Complexes, Lemma
\ref{dualizing-lemma-finite-ext-into-bounded-injective}.
Then we finally conclude by
More on Algebra, Lemma
\ref{more-algebra-lemma-internal-hom-evaluate-isomorphism-technical}.
\end{proof}
\begin{lemma}
\label{lemma-dualizing-schemes}
Let $K$ be a dualizing complex on a locally Noetherian scheme $X$.
Then $K$ is an object of $D_{\textit{Coh}}(\mathcal{O}_X)$
and $D = R\SheafHom_{\mathcal{O}_X}(-, K)$ induces an anti-equivalence
$$
D :
D_{\textit{Coh}}(\mathcal{O}_X)
\longrightarrow
D_{\textit{Coh}}(\mathcal{O}_X)
$$
which comes equipped with a canonical isomorphism
$\text{id} \to D \circ D$. If $X$ is quasi-compact, then
$D$ exchanges $D^+_{\textit{Coh}}(\mathcal{O}_X)$ and
$D^-_{\textit{Coh}}(\mathcal{O}_X)$ and induces an anti-equivalence
$D^b_{\textit{Coh}}(\mathcal{O}_X) \to D^b_{\textit{Coh}}(\mathcal{O}_X)$.
\end{lemma}
\begin{proof}
Let $U \subset X$ be an affine open. Say $U = \Spec(A)$ and
let $\omega_A^\bullet$ be a dualizing complex for $A$
corresponding to $K|_U$
as in Lemma \ref{lemma-equivalent-definitions}.
By Lemma \ref{lemma-affine-duality} the diagram
$$
\xymatrix{
D_{\textit{Coh}}(A) \ar[r] \ar[d]_{R\Hom_A(-, \omega_A^\bullet)} &
D_{\textit{Coh}}(\mathcal{O}_U) \ar[d]^{R\SheafHom_{\mathcal{O}_X}(-, K|_U)} \\
D_{\textit{Coh}}(A) \ar[r] &
D(\mathcal{O}_U)
}
$$
commutes. We conclude that $D$ sends $D_{\textit{Coh}}(\mathcal{O}_X)$ into
$D_{\textit{Coh}}(\mathcal{O}_X)$. Moreover, the canonical map
$$
L
\longrightarrow
R\SheafHom_{\mathcal{O}_X}(K, K) \otimes_{\mathcal{O}_X}^\mathbf{L} L
\longrightarrow
R\SheafHom_{\mathcal{O}_X}(R\SheafHom_{\mathcal{O}_X}(L, K), K)
$$
(using Cohomology, Lemma \ref{cohomology-lemma-internal-hom-evaluate}
for the second arrow)
is an isomorphism for all $L$ because this is true on affines by
Dualizing Complexes, Lemma \ref{dualizing-lemma-dualizing}\footnote{An
alternative is to first show that
$R\SheafHom_{\mathcal{O}_X}(K, K) = \mathcal{O}_X$ by
working affine locally and then use
Lemma \ref{lemma-internal-hom-evaluate-isom} part (2)
to see the map is an isomorphism.}
and we have already seen on affines that we recover what
happens in algebra.
The statement on boundedness properties of the functor $D$
in the quasi-compact case also follows from the corresponding
statements of Dualizing Complexes, Lemma \ref{dualizing-lemma-dualizing}.
\end{proof}
\noindent
Let $X$ be a locally ringed space. Recall that an object $L$ of
$D(\mathcal{O}_X)$ is {\it invertible} if it is an invertible object
for the symmetric monoidal structure on $D(\mathcal{O}_X)$ given
by derived tensor product. In
Cohomology, Lemma \ref{cohomology-lemma-invertible-derived}
we have seen this means $L$ is perfect and there is an open covering
$X = \bigcup U_i$ such that $L|_{U_i} \cong \mathcal{O}_{U_i}[-n_i]$
for some integers $n_i$. In this case, the function
$$
x \mapsto n_x,\quad
\text{where }n_x\text{ is the unique integer such that }
H^{n_x}(L_x) \not = 0
$$
is locally constant on $X$. In particular, we have
$L = \bigoplus H^n(L)[-n]$ which gives a well defined complex of
$\mathcal{O}_X$-modules (with zero differentials) representing $L$.
\begin{lemma}
\label{lemma-dualizing-unique-schemes}
Let $X$ be a locally Noetherian scheme. If $K$ and $K'$ are dualizing
complexes on $X$, then $K'$ is isomorphic to
$K \otimes_{\mathcal{O}_X}^\mathbf{L} L$
for some invertible object $L$ of $D(\mathcal{O}_X)$.
\end{lemma}
\begin{proof}
Set
$$
L = R\SheafHom_{\mathcal{O}_X}(K, K')
$$
This is an invertible object of $D(\mathcal{O}_X)$, because affine locally
this is true, see Dualizing Complexes, Lemma
\ref{dualizing-lemma-dualizing-unique} and its proof.
The evaluation map $L \otimes_{\mathcal{O}_X}^\mathbf{L} K \to K'$
is an isomorphism for the same reason.
\end{proof}
\begin{lemma}
\label{lemma-dimension-function-scheme}
Let $X$ be a locally Noetherian scheme. Let $\omega_X^\bullet$
be a dualizing complex on $X$. Then $X$ is universally catenary
and the function
$X \to \mathbf{Z}$ defined by
$$
x \longmapsto \delta(x)\text{ such that }
\omega_{X, x}^\bullet[-\delta(x)]
\text{ is a normalized dualizing complex over }
\mathcal{O}_{X, x}
$$
is a dimension function.
\end{lemma}
\begin{proof}
Immediate from the affine case
Dualizing Complexes, Lemma \ref{dualizing-lemma-dimension-function}
and the definitions.
\end{proof}
\begin{lemma}
\label{lemma-sitting-in-degrees}
Let $X$ be a locally Noetherian scheme. Let $\omega_X^\bullet$
be a dualizing complex on $X$ with associated dimension function $\delta$.
Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. Set
$\mathcal{E}^i = \SheafExt^{-i}_{\mathcal{O}_X}(\mathcal{F}, \omega_X^\bullet)$.
Then $\mathcal{E}^i$ is a coherent $\mathcal{O}_X$-module and
for $x \in X$ we have
\begin{enumerate}
\item $\mathcal{E}^i_x$ is nonzero only for
$\delta(x) \leq i \leq \delta(x) + \dim(\text{Supp}(\mathcal{F}_x))$,
\item $\dim(\text{Supp}(\mathcal{E}^{i + \delta(x)}_x)) \leq i$,
\item $\text{depth}(\mathcal{F}_x)$ is the smallest integer
$i \geq 0$ such that $\mathcal{E}_x^{i + \delta(x)} \not = 0$, and
\item we have
$x \in \text{Supp}(\bigoplus_{j \leq i} \mathcal{E}^j)
\Leftrightarrow
\text{depth}_{\mathcal{O}_{X, x}}(\mathcal{F}_x) + \delta(x) \leq i$.
\end{enumerate}
\end{lemma}
\begin{proof}
Lemma \ref{lemma-dualizing-schemes} tells us that $\mathcal{E}^i$
is coherent. Choosing an affine neighbourhood of $x$ and using
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-quasi-coherence-internal-hom}
and
More on Algebra, Lemma
\ref{more-algebra-lemma-base-change-RHom} part (3)
we have
$$
\mathcal{E}^i_x =
\SheafExt^{-i}_{\mathcal{O}_X}(\mathcal{F}, \omega_X^\bullet)_x =
\Ext^{-i}_{\mathcal{O}_{X, x}}(\mathcal{F}_x,
\omega_{X, x}^\bullet) =
\Ext^{\delta(x) - i}_{\mathcal{O}_{X, x}}(\mathcal{F}_x,
\omega_{X, x}^\bullet[-\delta(x)])
$$
By construction of $\delta$ in Lemma \ref{lemma-dimension-function-scheme}
this reduces parts (1), (2), and (3) to
Dualizing Complexes, Lemma \ref{dualizing-lemma-sitting-in-degrees}.
Part (4) is a formal consequence of (3) and (1).
\end{proof}
\section{Right adjoint of pushforward}
\label{section-twisted-inverse-image}
\noindent
References for this section and the following are
\cite{Neeman-Grothendieck}, \cite{LN},
\cite{Lipman-notes}, and \cite{Neeman-improvement}.
\medskip\noindent
Let $f : X \to Y$ be a morphism of schemes.
In this section we consider the right adjoint to the functor
$Rf_* : D_\QCoh(\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_Y)$.
In the literature, if this functor exists, then it is sometimes
denoted $f^{\times}$. This notation is not universally accepted and we refrain
from using it. We will not use the notation $f^!$ for such a functor,
as this would clash (for general morphisms $f$) with the notation in
\cite{RD}.
\begin{lemma}
\label{lemma-twisted-inverse-image}
\begin{reference}
This is almost the same as \cite[Example 4.2]{Neeman-Grothendieck}.
\end{reference}
Let $f : X \to Y$ be a morphism between quasi-separated and quasi-compact
schemes. The functor $Rf_* : D_\QCoh(\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_Y)$
has a right adjoint.
\end{lemma}
\begin{proof}
We will prove a right adjoint exists by verifying the hypotheses of
Derived Categories, Proposition \ref{derived-proposition-brown}.
First off, the category $D_\QCoh(\mathcal{O}_X)$ has direct sums, see
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-quasi-coherence-direct-sums}.
The category $D_\QCoh(\mathcal{O}_X)$ is compactly generated by
Derived Categories of Schemes, Theorem
\ref{perfect-theorem-bondal-van-den-Bergh}.
Since $X$ and $Y$ are quasi-compact and quasi-separated, so is $f$, see
Schemes, Lemmas \ref{schemes-lemma-compose-after-separated} and
\ref{schemes-lemma-quasi-compact-permanence}.
Hence the functor $Rf_*$ commutes with direct sums, see
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-quasi-coherence-pushforward-direct-sums}.
This finishes the proof.
\end{proof}
\begin{example}
\label{example-affine-twisted-inverse-image}
Let $A \to B$ be a ring map. Let $Y = \Spec(A)$ and $X = \Spec(B)$
and $f : X \to Y$ the morphism corresponding to $A \to B$.
Then $Rf_* : D_\QCoh(\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_Y)$
corresponds to restriction $D(B) \to D(A)$ via
the equivalences $D(B) \to D_\QCoh(\mathcal{O}_X)$ and
$D(A) \to D_\QCoh(\mathcal{O}_Y)$. Hence the right adjoint
corresponds to the functor $K \longmapsto R\Hom(B, K)$ of
Dualizing Complexes, Section \ref{dualizing-section-trivial}.
\end{example}
\begin{example}
\label{example-does-not-preserve-coherent}
If $f : X \to Y$ is a separated finite type morphism of Noetherian schemes,
then the right adjoint of
$Rf_* : D_\QCoh(\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_Y)$ does not map
$D_{\textit{Coh}}(\mathcal{O}_Y)$ into
$D_{\textit{Coh}}(\mathcal{O}_X)$. Namely, let $k$ be a field and
consider the morphism $f : \mathbf{A}^1_k \to \Spec(k)$. By
Example \ref{example-affine-twisted-inverse-image}
this corresponds to the question of whether
$R\Hom(B, -)$ maps $D_{\textit{Coh}}(A)$ into $D_{\textit{Coh}}(B)$
where $A = k$ and $B = k[x]$. This is not true because
$$
R\Hom(k[x], k) = \left(\prod\nolimits_{n \geq 0} k\right)[0]
$$
which is not a finite $k[x]$-module. Hence $a(\mathcal{O}_Y)$
does not have coherent cohomology sheaves.
\end{example}
\begin{example}
\label{example-does-not-preserve-bounded-above}
If $f : X \to Y$ is a proper or even finite morphism of Noetherian schemes,
then the right adjoint of
$Rf_* : D_\QCoh(\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_Y)$
does not map $D_\QCoh^-(\mathcal{O}_Y)$ into
$D_\QCoh^-(\mathcal{O}_X)$. Namely, let $k$ be a field, let
$k[\epsilon]$ be the dual numbers over $k$, let
$X = \Spec(k)$, and let $Y = \Spec(k[\epsilon])$.
Then $\Ext^i_{k[\epsilon]}(k, k)$ is nonzero for all $i \geq 0$.
Hence $a(\mathcal{O}_Y)$ is not bounded above
by Example \ref{example-affine-twisted-inverse-image}.
\end{example}
\begin{lemma}
\label{lemma-twisted-inverse-image-bounded-below}
Let $f : X \to Y$ be a morphism of quasi-compact and quasi-separated
schemes. Let $a : D_\QCoh(\mathcal{O}_Y) \to D_\QCoh(\mathcal{O}_X)$
be the right adjoint to $Rf_*$ of Lemma \ref{lemma-twisted-inverse-image}.
Then $a$ maps $D^+_\QCoh(\mathcal{O}_Y)$ into $D^+_\QCoh(\mathcal{O}_X)$.
In fact, there exists an integer $N$ such that
$H^i(K) = 0$ for $i \leq c$ implies $H^i(a(K)) = 0$ for $i \leq c - N$.
\end{lemma}
\begin{proof}
By Derived Categories of Schemes, Lemma
\ref{perfect-lemma-quasi-coherence-direct-image}
the functor $Rf_*$ has finite cohomological dimension. In other words,
there exist an integer $N$ such that
$H^i(Rf_*L) = 0$ for $i \geq N + c$ if $H^i(L) = 0$ for $i \geq c$.
Say $K \in D^+_\QCoh(\mathcal{O}_Y)$ has $H^i(K) = 0$ for $i \leq c$.
Then
$$
\Hom_{D(\mathcal{O}_X)}(\tau_{\leq c - N}a(K), a(K)) =
\Hom_{D(\mathcal{O}_Y)}(Rf_*\tau_{\leq c - N}a(K), K) = 0
$$
by what we said above. Clearly, this implies that
$H^i(a(K)) = 0$ for $i \leq c - N$.
\end{proof}
\noindent
Let $f : X \to Y$ be a morphism of quasi-separated and quasi-compact
schemes. Let $a$ denote the right adjoint to
$Rf_* : D_\QCoh(\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_Y)$. For every
$K \in D_\QCoh(\mathcal{O}_Y)$ and $L \in D_\QCoh(\mathcal{O}_X)$
we obtain a canonical map
\begin{equation}
\label{equation-sheafy-trace}
Rf_*R\SheafHom_{\mathcal{O}_X}(L, a(K))
\longrightarrow
R\SheafHom_{\mathcal{O}_Y}(Rf_*L, K)
\end{equation}
Namely, this map is constructed as the composition
$$
Rf_*R\SheafHom_{\mathcal{O}_X}(L, a(K)) \to
R\SheafHom_{\mathcal{O}_Y}(Rf_*L, Rf_*a(K)) \to
R\SheafHom_{\mathcal{O}_Y}(Rf_*L, K)
$$
where the first arrow is
Cohomology, Remark
\ref{cohomology-remark-projection-formula-for-internal-hom}
and the second arrow is the counit $Rf_*a(K) \to K$ of the adjunction.
\begin{lemma}
\label{lemma-iso-on-RSheafHom}
Let $f : X \to Y$ be a morphism of quasi-compact and quasi-separated schemes.
Let $a$ be the right adjoint to
$Rf_* : D_\QCoh(\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_Y)$.
Let $L \in D_\QCoh(\mathcal{O}_X)$ and $K \in D_\QCoh(\mathcal{O}_Y)$.
Then the map (\ref{equation-sheafy-trace})
$$
Rf_*R\SheafHom_{\mathcal{O}_X}(L, a(K))
\longrightarrow
R\SheafHom_{\mathcal{O}_Y}(Rf_*L, K)
$$
becomes an isomorphism after applying the functor
$DQ_Y : D(\mathcal{O}_Y) \to D_\QCoh(\mathcal{O}_Y)$
discussed in Derived Categories of Schemes, Section
\ref{perfect-section-better-coherator}.
\end{lemma}
\begin{proof}
The statement makes sense as $DQ_Y$ exists by
Derived Categories of Schemes, Lemma \ref{perfect-lemma-better-coherator}.
Since $DQ_Y$ is the right adjoint to the inclusion
functor $D_\QCoh(\mathcal{O}_Y) \to D(\mathcal{O}_Y)$
to prove the lemma we have to show that for any $M \in D_\QCoh(\mathcal{O}_Y)$
the map (\ref{equation-sheafy-trace}) induces an bijection
$$
\Hom_Y(M, Rf_*R\SheafHom_{\mathcal{O}_X}(L, a(K)))
\longrightarrow
\Hom_Y(M, R\SheafHom_{\mathcal{O}_Y}(Rf_*L, K))
$$
To see this we use the following string of equalities
\begin{align*}
\Hom_Y(M, Rf_*R\SheafHom_{\mathcal{O}_X}(L, a(K)))
& =
\Hom_X(Lf^*M, R\SheafHom_{\mathcal{O}_X}(L, a(K))) \\
& =
\Hom_X(Lf^*M \otimes_{\mathcal{O}_X}^\mathbf{L} L, a(K)) \\
& =
\Hom_Y(Rf_*(Lf^*M \otimes_{\mathcal{O}_X}^\mathbf{L} L), K) \\
& =
\Hom_Y(M \otimes_{\mathcal{O}_Y}^\mathbf{L} Rf_*L, K) \\
& =
\Hom_Y(M, R\SheafHom_{\mathcal{O}_Y}(Rf_*L, K))
\end{align*}
The first equality holds by Cohomology, Lemma \ref{cohomology-lemma-adjoint}.
The second equality by Cohomology, Lemma \ref{cohomology-lemma-internal-hom}.
The third equality by construction of $a$.
The fourth equality by Derived Categories of Schemes, Lemma
\ref{perfect-lemma-cohomology-base-change} (this is the important step).
The fifth by Cohomology, Lemma \ref{cohomology-lemma-internal-hom}.
\end{proof}
\begin{example}
\label{example-iso-on-RSheafHom}
The statement of Lemma \ref{lemma-iso-on-RSheafHom} is not true without
applying the ``coherator'' $DQ_Y$. Indeed, suppose $Y = \Spec(R)$ and
$X = \mathbf{A}^1_R$. Take $L = \mathcal{O}_X$ and $K = \mathcal{O}_Y$.
The left hand side of the arrow is in $D_\QCoh(\mathcal{O}_Y)$ but
the right hand side of the arrow is isomorphic to
$\prod_{n \geq 0} \mathcal{O}_Y$ which is not quasi-coherent.
\end{example}
\begin{remark}
\label{remark-iso-on-RSheafHom}
In the situation of Lemma \ref{lemma-iso-on-RSheafHom} we have
$$
DQ_Y(Rf_*R\SheafHom_{\mathcal{O}_X}(L, a(K))) =
Rf_* DQ_X(R\SheafHom_{\mathcal{O}_X}(L, a(K)))
$$
by Derived Categories of Schemes, Lemma
\ref{perfect-lemma-pushforward-better-coherator}.
Thus if $R\SheafHom_{\mathcal{O}_X}(L, a(K)) \in D_\QCoh(\mathcal{O}_X)$,
then we can ``erase'' the $DQ_Y$ on the left hand side of the arrow.
On the other hand, if we know that
$R\SheafHom_{\mathcal{O}_Y}(Rf_*L, K) \in D_\QCoh(\mathcal{O}_Y)$,
then we can ``erase'' the $DQ_Y$ from the right hand side of the arrow.
If both are true then we see that (\ref{equation-sheafy-trace})
is an isomorphism. Combining this with
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-quasi-coherence-internal-hom}
we see that $Rf_*R\SheafHom_{\mathcal{O}_X}(L, a(K)) \to
R\SheafHom_{\mathcal{O}_Y}(Rf_*L, K)$ is an isomorphism if
\begin{enumerate}
\item $L$ and $Rf_*L$ are perfect, or
\item $K$ is bounded below and $L$ and $Rf_*L$ are pseudo-coherent.
\end{enumerate}
For (2) we use that $a(K)$ is bounded below if $K$
is bounded below, see Lemma \ref{lemma-twisted-inverse-image-bounded-below}.
\end{remark}
\begin{example}
\label{example-iso-on-RSheafHom-noetherian}
Let $f : X \to Y$ be a proper morphism of Noetherian schemes,
$L \in D^-_{\textit{Coh}}(X)$ and $K \in D^+_{\QCoh}(\mathcal{O}_Y)$.
Then the map $Rf_*R\SheafHom_{\mathcal{O}_X}(L, a(K)) \to
R\SheafHom_{\mathcal{O}_Y}(Rf_*L, K)$ is an isomorphism.
Namely, the complexes $L$ and $Rf_*L$ are pseudo-coherent by
Derived Categories of Schemes, Lemmas
\ref{perfect-lemma-identify-pseudo-coherent-noetherian} and
\ref{perfect-lemma-direct-image-coherent}
and the discussion in Remark \ref{remark-iso-on-RSheafHom} applies.
\end{example}
\begin{lemma}
\label{lemma-iso-global-hom}
Let $f : X \to Y$ be a morphism of quasi-separated and quasi-compact
schemes.
For all $L \in D_\QCoh(\mathcal{O}_X)$ and $K \in D_\QCoh(\mathcal{O}_Y)$
(\ref{equation-sheafy-trace}) induces an isomorphism
$R\Hom_X(L, a(K)) \to R\Hom_Y(Rf_*L, K)$ of global derived homs.
\end{lemma}
\begin{proof}
By the construction in
Cohomology, Section \ref{cohomology-section-global-RHom}
we have
$$
R\Hom_X(L, a(K)) =
R\Gamma(X, R\SheafHom_{\mathcal{O}_X}(L, a(K))) =
R\Gamma(Y, Rf_*R\SheafHom_{\mathcal{O}_X}(L, a(K)))
$$
and
$$
R\Hom_Y(Rf_*L, K) = R\Gamma(Y, R\SheafHom_{\mathcal{O}_Y}(Rf_*L, K))
$$
Thus the lemma is a consequence of Lemma \ref{lemma-iso-on-RSheafHom}.
Namely, a map $E \to E'$ in $D(\mathcal{O}_Y)$ which induces
an isomorphism $DQ_Y(E) \to DQ_Y(E')$ induces a quasi-isomorphism
$R\Gamma(Y, E) \to R\Gamma(Y, E')$. Indeed we have
$H^i(Y, E) = \Ext^i_Y(\mathcal{O}_Y, E) = \Hom(\mathcal{O}_Y[-i], E) =
\Hom(\mathcal{O}_Y[-i], DQ_Y(E))$ because $\mathcal{O}_Y[-i]$
is in $D_\QCoh(\mathcal{O}_Y)$ and $DQ_Y$ is the right adjoint
to the inclusion functor $D_\QCoh(\mathcal{O}_Y) \to D(\mathcal{O}_Y)$.
\end{proof}
\section{Right adjoint of pushforward and restriction to opens}
\label{section-restriction-to-opens}
\noindent
In this section we study the question to what extend the right adjoint
of pushforward commutes with restriction to open subschemes. This is
a base change question, so let's first discuss this more generally.
\medskip\noindent
We often want to know whether the right adjoints to pushforward commutes
with base change. Thus we consider a cartesian square
\begin{equation}
\label{equation-base-change}
\vcenter{
\xymatrix{
X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^f \\
Y' \ar[r]^g & Y
}
}
\end{equation}
of quasi-compact and quasi-separated schemes.
Denote
$$
a : D_\QCoh(\mathcal{O}_Y) \to D_\QCoh(\mathcal{O}_X)
\quad\text{and}\quad
a' : D_\QCoh(\mathcal{O}_{Y'}) \to D_\QCoh(\mathcal{O}_{X'})
$$
the right adjoints to $Rf_*$ and $Rf'_*$
(Lemma \ref{lemma-twisted-inverse-image}).
Consider the base change map of
Cohomology, Remark \ref{cohomology-remark-base-change}.
It induces a transformation of functors
$$
Lg^* \circ Rf_* \longrightarrow Rf'_* \circ L(g')^*
$$
on derived categories of sheaves with quasi-coherent cohomology.
Hence a transformation between the right adjoints in the opposite direction
$$
a \circ Rg_* \longleftarrow Rg'_* \circ a'
$$
\begin{lemma}
\label{lemma-flat-precompose-pus}
In diagram (\ref{equation-base-change}) assume that $g$ is flat or
more generally that $f$ and $g$ are Tor independent. Then
$a \circ Rg_* \leftarrow Rg'_* \circ a'$ is an isomorphism.
\end{lemma}
\begin{proof}
In this case the base change map
$Lg^* \circ Rf_* K \longrightarrow Rf'_* \circ L(g')^*K$
is an isomorphism for every $K$ in $D_\QCoh(\mathcal{O}_X)$ by
Derived Categories of Schemes, Lemma \ref{perfect-lemma-compare-base-change}.
Thus the corresponding transformation between adjoint functors
is an isomorphism as well.
\end{proof}
\noindent
Let $f : X \to Y$ be a morphism of quasi-compact and quasi-separated
schemes. Let $V \subset Y$ be a quasi-compact open subscheme and set
$U = f^{-1}(V)$. This gives a cartesian square
$$
\xymatrix{
U \ar[r]_{j'} \ar[d]_{f|_U} & X \ar[d]^f \\
V \ar[r]^j & Y
}
$$
as in (\ref{equation-base-change}). By Lemma \ref{lemma-flat-precompose-pus}
the map $\xi : a \circ Rj_* \leftarrow Rj'_* \circ a'$ is an isomorphism
where $a$ and $a'$ are the right adjoints to
$Rf_*$ and $R(f|_U)_*$. We obtain a transformation
of functors $D_\QCoh(\mathcal{O}_Y) \to D_\QCoh(\mathcal{O}_U)$
\begin{equation}
\label{equation-sheafy}
(j')^* \circ a \to
(j')^* \circ a \circ Rj_* \circ j^* \xrightarrow{\xi^{-1}}
(j')^* \circ Rj'_* \circ a' \circ j^* \to a' \circ j^*
\end{equation}
where the first arrow comes from $\text{id} \to Rj_* \circ j^*$
and the final arrow from the isomorphism $(j')^* \circ Rj'_* \to \text{id}$.
In particular, we see that (\ref{equation-sheafy}) is an isomorphism
when evaluated on $K$ if and only if $a(K)|_U \to a(Rj_*(K|_V))|_U$
is an isomorphism.
\begin{example}
\label{example-not-supported-on-inverse-image}
There is a finite morphism $f : X \to Y$ of Noetherian schemes
such that (\ref{equation-sheafy}) is not an isomorphism
when evaluated on some
$K \in D_{\textit{Coh}}(\mathcal{O}_Y)$.
Namely, let $X = \Spec(B) \to Y = \Spec(A)$ with
$A = k[x, \epsilon]$ where $k$ is a field and $\epsilon^2 = 0$ and
$B = k[x] = A/(\epsilon)$. For $n \in \mathbf{N}$ set
$M_n = A/(\epsilon, x^n)$. Observe that
$$
\Ext^i_A(B, M_n) = M_n,\quad i \geq 0
$$
because $B$ has the free periodic resolution
$\ldots \to A \to A \to A$ with maps given by multiplication by $\epsilon$.
Consider the object
$K = \bigoplus M_n[n] = \prod M_n[n]$
of $D_{\textit{Coh}}(A)$ (equality in $D(A)$ by
Derived Categories, Lemmas \ref{derived-lemma-direct-sums} and
\ref{derived-lemma-products}). Then we see that $a(K)$ corresponds
to $R\Hom(B, K)$ by Example \ref{example-affine-twisted-inverse-image} and
$$
H^0(R\Hom(B, K)) = \Ext^0_A(B, K) =
\prod\nolimits_{n \geq 1} \Ext^n_A(B. M_n) =
\prod\nolimits_{n \geq 1} M_n
$$
by the above. But this module has elements which are not
annihilated by any power of $x$, whereas the complex $K$
does have every element of its cohomology annihilated by
a power of $x$. In other words, for the map (\ref{equation-sheafy})
with $V = D(x)$ and $U = D(x)$ and the complex $K$ cannot
be an isomorphism because $(j')^*(a(K))$ is nonzero and
$a'(j^*K)$ is zero.
\end{example}
\begin{lemma}
\label{lemma-when-sheafy}
Let $f : X \to Y$ be a morphism of quasi-compact and quasi-separated
schemes. Let $a$ be the right adjoint to
$Rf_* : D_\QCoh(\mathcal{O}_X) \to D_\QCoh(\mathcal{O}_Y)$.
Let $V \subset Y$ be quasi-compact open with inverse image $U \subset X$.
\begin{enumerate}
\item For every $Q \in D_\QCoh^+(\mathcal{O}_Y)$
supported on $Y \setminus V$ the image $a(Q)$ is supported on
$X \setminus U$ if and only if (\ref{equation-sheafy})
is an isomorphism on all $K$ in $D_\QCoh^+(\mathcal{O}_Y)$.
\item For every $Q \in D_\QCoh(\mathcal{O}_Y)$
supported on $Y \setminus V$ the image $a(Q)$ is supported on
$X \setminus U$ if and only if (\ref{equation-sheafy})
is an isomorphism on all $K$ in $D_\QCoh(\mathcal{O}_Y)$.
\item If $a$ commutes with direct sums, then the equivalent conditions of
(1) imply the equivalent conditions of (2).
\end{enumerate}
\end{lemma}
\begin{proof}
Proof of (1). Let $K \in D_\QCoh^+(\mathcal{O}_Y)$.
Choose a distinguished triangle
$$
K \to Rj_*K|_V \to Q \to K[1]
$$
Observe that $Q$ is in $D_\QCoh^+(\mathcal{O}_Y)$
(Derived Categories of Schemes, Lemma
\ref{perfect-lemma-quasi-coherence-direct-image})
and is supported on $Y \setminus V$
(Derived Categories of Schemes, Definition
\ref{perfect-definition-supported-on}).
Applying $a$ we obtain a distinguished triangle
$$
a(K) \to a(Rj_*K|_V) \to a(Q) \to a(K)[1]
$$
on $X$. If $a(Q)$ is supported on $X \setminus U$, then
restricting to $U$ the map $a(K)|_U \to a(Rj_*K|_V)|_U$ is an
isomorphism, i.e., (\ref{equation-sheafy}) is an isomorphism on $K$.
The converse is immediate.
\medskip\noindent
The proof of (2) is exactly the same as the proof of (1).
\medskip\noindent
Proof of (3). Assume the equivalent conditions of (1) hold.
Set $T = Y \setminus V$.
We will use the notation $D_{\QCoh, T}(\mathcal{O}_Y)$ and
$D_{\QCoh, f^{-1}(T)}(\mathcal{O}_X)$ to denote complexes
whose cohomology sheaves are supported on $T$ and $f^{-1}(T)$.
Since $a$ commutes with direct sums, the strictly full, saturated, triangulated
subcategory $\mathcal{D}$ with objects
$$
\{Q \in D_{\QCoh, T}(\mathcal{O}_Y) \mid
a(Q) \in D_{\QCoh, f^{-1}(T)}(\mathcal{O}_X)\}
$$
is preserved by direct sums and hence derived colimits.
On the other hand, the category $D_{\QCoh, T}(\mathcal{O}_Y)$
is generated by a perfect object $E$
(see Derived Categories of Schemes, Lemma
\ref{perfect-lemma-generator-with-support}).
By assumption we see that $E \in \mathcal{D}$.
By Derived Categories, Lemma \ref{derived-lemma-write-as-colimit}
every object $Q$ of $D_{\QCoh, T}(\mathcal{O}_Y)$ is a derived
colimit of a system $Q_1 \to Q_2 \to Q_3 \to \ldots$
such that the cones of the transition maps are direct sums
of shifts of $E$. Arguing by induction we see that
$Q_n \in \mathcal{D}$ for all $n$ and finally that $Q$ is
in $\mathcal{D}$. Thus the equivalent conditions of (2) hold.
\end{proof}
\begin{lemma}
\label{lemma-proper-noetherian}
Let $Y$ be a quasi-compact and quasi-separated scheme.
Let $f : X \to Y$ be a proper morphism. If\footnote{This proof works for those
morphisms of quasi-compact and quasi-separated schemes such that
$Rf_*P$ is pseudo-coherent for all $P$ perfect on $X$. It follows
easily from a theorem of Kiehl \cite{Kiehl} that this holds if
$f$ is proper and pseudo-coherent. This is the correct generality
for this lemma and some of the other results in this chapter.}
\begin{enumerate}
\item $f$ is flat and of finite presentation, or
\item $Y$ is Noetherian
\end{enumerate}
then the equivalent conditions of Lemma \ref{lemma-when-sheafy} part (1)
hold for all quasi-compact opens $V$ of $Y$.
\end{lemma}
\begin{proof}
Let $Q \in D^+_\QCoh(\mathcal{O}_Y)$ be supported on $Y \setminus V$.
To get a contradiction, assume that $a(Q)$ is not supported on
$X \setminus U$. Then we can find a perfect complex $P_U$ on $U$
and a nonzero map $P_U \to a(Q)|_U$ (follows from
Derived Categories of Schemes, Theorem
\ref{perfect-theorem-bondal-van-den-Bergh}). Then using
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-lift-map-from-perfect-complex-with-support}
we may assume there is a perfect complex $P$ on $X$ and a map
$P \to a(Q)$ whose restriction to $U$ is nonzero.
By definition of $a$ this map
is adjoint to a map $Rf_*P \to Q$.
\medskip\noindent
The complex $Rf_*P$ is pseudo-coherent. In case (1) this follows
from Derived Categories of Schemes, Lemma
\ref{perfect-lemma-flat-proper-pseudo-coherent-direct-image-general}.
In case (2) this follows from
Derived Categories of Schemes, Lemmas
\ref{perfect-lemma-direct-image-coherent} and
\ref{perfect-lemma-identify-pseudo-coherent-noetherian}.
Thus we may apply
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-map-from-pseudo-coherent-to-complex-with-support}
and get a map $I \to \mathcal{O}_Y$ of perfect complexes
whose restriction to $V$ is an isomorphism such that the composition
$I \otimes^\mathbf{L}_{\mathcal{O}_Y} Rf_*P \to Rf_*P \to Q$ is zero.
By Derived Categories of Schemes, Lemma
\ref{perfect-lemma-cohomology-base-change}
we have $I \otimes^\mathbf{L}_{\mathcal{O}_Y} Rf_*P =
Rf_*(Lf^*I \otimes^\mathbf{L}_{\mathcal{O}_X} P)$.
We conclude that the composition
$$
Lf^*I \otimes^\mathbf{L}_{\mathcal{O}_X} P \to P \to a(Q)
$$
is zero. However, the restriction to $U$ is the map
$P|_U \to a(Q)|_U$ which we assumed to be nonzero.
This contradiction finishes the proof.
\end{proof}
\section{Right adjoint of pushforward and base change, I}
\label{section-base-change-map}
\noindent
The map (\ref{equation-sheafy}) is a special case of a base change map.
Namely, suppose that we have a cartesian diagram
$$
\xymatrix{
X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^f \\
Y' \ar[r]^g & Y
}
$$
of quasi-compact and quasi-separated schemes, i.e., a diagram as in
(\ref{equation-base-change}). Assume $f$ and $g$ are {\bf Tor independent}.
Then we can consider the morphism of functors
$D_\QCoh(\mathcal{O}_Y) \to D_\QCoh(\mathcal{O}_{X'})$
given by the composition
\begin{equation}
\label{equation-base-change-map}
L(g')^* \circ a \to
L(g')^* \circ a \circ Rg_* \circ Lg^* \leftarrow
L(g')^* \circ Rg'_* \circ a' \circ Lg^* \to a' \circ Lg^*
\end{equation}
The first arrow comes from the adjunction map $\text{id} \to Rg_* Lg^*$
and the last arrow from the adjunction map $L(g')^*Rg'_* \to \text{id}$.
We need the assumption on Tor independence to invert the arrow
in the middle, see Lemma \ref{lemma-flat-precompose-pus}.
Alternatively, we can think of (\ref{equation-base-change-map}) by
adjointness of $L(g')^*$ and $R(g')_*$ as a natural transformation
$$
a \to a \circ Rg_* \circ Lg^* \leftarrow Rg'_* \circ a' \circ Lg^*
$$
were again the second arrow is invertible. If $M \in D_\QCoh(\mathcal{O}_X)$
and $K \in D_\QCoh(\mathcal{O}_Y)$
then on Yoneda functors this map is given by
\begin{align*}
\Hom_X(M, a(K))
& =
\Hom_Y(Rf_*M, K) \\
& \to
\Hom_Y(Rf_*M, Rg_* Lg^*K) \\
& =
\Hom_{Y'}(Lg^*Rf_*M, Lg^*K) \\
& \leftarrow