-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathgroupoids.tex
5087 lines (4584 loc) · 183 KB
/
groupoids.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Groupoid Schemes}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This chapter is devoted to generalities concerning groupoid schemes.
See for example the beautiful paper \cite{K-M} by Keel and Mori.
\section{Notation}
\label{section-notation}
\noindent
Let $S$ be a scheme. If $U$, $T$ are schemes over $S$ we denote
$U(T)$ for the set of $T$-valued points of $U$ {\it over} $S$. In a formula:
$U(T) = \Mor_S(T, U)$. We try to reserve the letter $T$ to denote
a ``test scheme'' over $S$, as in the discussion that follows.
Suppose we are given schemes $X$, $Y$ over
$S$ and a morphism of schemes $f : X \to Y$ over $S$.
For any scheme $T$ over $S$ we get an induced map of sets
$$
f : X(T) \longrightarrow Y(T)
$$
which as indicated we denote by $f$ also. In fact this construction
is functorial in the scheme $T/S$. Yoneda's Lemma, see Categories,
Lemma \ref{categories-lemma-yoneda}, says that $f$ determines and is
determined by this transformation of functors $f : h_X \to h_Y$.
More generally, we use the same notation for maps between fibre
products. For example, if
$X$, $Y$, $Z$ are schemes over $S$, and if
$m : X \times_S Y \to Z \times_S Z$ is
a morphism of schemes over $S$, then we think of $m$ as corresponding
to a collection of maps between $T$-valued points
$$
X(T) \times Y(T) \longrightarrow Z(T) \times Z(T).
$$
And so on and so forth.
\medskip\noindent
We continue our convention to label projection maps starting with
index $0$, so we have $\text{pr}_0 : X \times_S Y \to X$ and
$\text{pr}_1 : X \times_S Y \to Y$.
\section{Equivalence relations}
\label{section-equivalence-relations}
\noindent
Recall that a {\it relation} $R$ on a set $A$ is just a subset
of $R \subset A \times A$. We usually write $a R b$ to indicate
$(a, b) \in R$. We say the relation is {\it transitive} if
$a R b, b R c \Rightarrow a R c$. We say the relation is
{\it reflexive} if $a R a$ for all $a \in A$. We say the relation is
{\it symmetric} if $a R b \Rightarrow b R a$.
A relation is called an {\it equivalence relation} if
it is transitive, reflexive and symmetric.
\medskip\noindent
In the setting of schemes we are going to relax the notion of a
relation a little bit and just require $R \to A \times A$ to
be a map. Here is the definition.
\begin{definition}
\label{definition-equivalence-relation}
Let $S$ be a scheme. Let $U$ be a scheme over $S$.
\begin{enumerate}
\item A {\it pre-relation} on $U$ over $S$ is any morphism
of schemes $j : R \to U \times_S U$. In this case we set
$t = \text{pr}_0 \circ j$ and $s = \text{pr}_1 \circ j$, so
that $j = (t, s)$.
\item A {\it relation} on $U$ over $S$ is a monomorphism
of schemes $j : R \to U \times_S U$.
\item A {\it pre-equivalence relation} is a pre-relation
$j : R \to U \times_S U$ such that the image of
$j : R(T) \to U(T) \times U(T)$ is an equivalence relation for
all $T/S$.
\item We say a morphism $R \to U \times_S U$ of schemes is
an {\it equivalence relation on $U$ over $S$}
if and only if for every scheme $T$ over $S$ the $T$-valued
points of $R$ define an equivalence relation
on the set of $T$-valued points of $U$.
\end{enumerate}
\end{definition}
\noindent
In other words, an equivalence relation is a pre-equivalence relation
such that $j$ is a relation.
\begin{lemma}
\label{lemma-restrict-relation}
Let $S$ be a scheme.
Let $U$ be a scheme over $S$.
Let $j : R \to U \times_S U$ be a pre-relation.
Let $g : U' \to U$ be a morphism of schemes.
Finally, set
$$
R' = (U' \times_S U')\times_{U \times_S U} R
\xrightarrow{j'}
U' \times_S U'
$$
Then $j'$ is a pre-relation on $U'$ over $S$.
If $j$ is a relation, then $j'$ is a relation.
If $j$ is a pre-equivalence relation, then $j'$ is a pre-equivalence relation.
If $j$ is an equivalence relation, then $j'$ is an equivalence relation.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{definition}
\label{definition-restrict-relation}
Let $S$ be a scheme.
Let $U$ be a scheme over $S$.
Let $j : R \to U \times_S U$ be a pre-relation.
Let $g : U' \to U$ be a morphism of schemes.
The pre-relation $j' : R' \to U' \times_S U'$ is called
the {\it restriction}, or {\it pullback} of the pre-relation $j$ to $U'$.
In this situation we sometimes write $R' = R|_{U'}$.
\end{definition}
\begin{lemma}
\label{lemma-pre-equivalence-equivalence-relation-points}
Let $j : R \to U \times_S U$ be a pre-relation.
Consider the relation on points of the scheme $U$ defined by
the rule
$$
x \sim y
\Leftrightarrow
\exists\ r \in R :
t(r) = x,
s(r) = y.
$$
If $j$ is a pre-equivalence relation then this is an
equivalence relation.
\end{lemma}
\begin{proof}
Suppose that $x \sim y$ and $y \sim z$.
Pick $r \in R$ with $t(r) = x$, $s(r) = y$ and
pick $r' \in R$ with $t(r') = y$, $s(r') = z$.
Pick a field $K$ fitting into the following commutative
diagram
$$
\xymatrix{
\kappa(r) \ar[r] & K \\
\kappa(y) \ar[u] \ar[r] & \kappa(r') \ar[u]
}
$$
Denote $x_K, y_K, z_K : \Spec(K) \to U$
the morphisms
$$
\begin{matrix}
\Spec(K) \to \Spec(\kappa(r))
\to
\Spec(\kappa(x)) \to U \\
\Spec(K) \to \Spec(\kappa(r))
\to
\Spec(\kappa(y)) \to U \\
\Spec(K) \to \Spec(\kappa(r'))
\to
\Spec(\kappa(z)) \to U
\end{matrix}
$$
By construction $(x_K, y_K) \in j(R(K))$ and
$(y_K, z_K) \in j(R(K))$. Since $j$ is a pre-equivalence relation
we see that also $(x_K, z_K) \in j(R(K))$.
This clearly implies that $x \sim z$.
\medskip\noindent
The proof that $\sim$ is reflexive and symmetric is omitted.
\end{proof}
\begin{lemma}
\label{lemma-etale-equivalence-relation}
Let $j : R \to U \times_S U$ be a pre-relation. Assume
\begin{enumerate}
\item $s, t$ are unramified,
\item for any algebraically closed field $k$ over $S$
the map $R(k) \to U(k) \times U(k)$ is an equivalence relation,
\item there are morphisms $e : U \to R$, $i : R \to R$,
$c : R \times_{s, U, t} R \to R$ such that
$$
\xymatrix{
U \ar[r]_e \ar[d]_\Delta &
R \ar[d]_j &
R \ar[d]^j \ar[r]_i &
R \ar[d]^j &
R \times_{s, U, t} R \ar[d]^{j \times j} \ar[r]_c &
R \ar[d]^j \\
U \times_S U \ar[r] &
U \times_S U &
U \times_S U \ar[r]^{flip} &
U \times_S U &
U \times_S U \times_S U \ar[r]^{\text{pr}_{02}} &
U \times_S U
}
$$
are commutative.
\end{enumerate}
Then $j$ is an equivalence relation.
\end{lemma}
\begin{proof}
By condition (1) and
Morphisms, Lemma \ref{morphisms-lemma-unramified-permanence}
we see that $j$ is a unramified. Then
$\Delta_j : R \to R \times_{U \times_S U} R$ is an open immersion by
Morphisms, Lemma \ref{morphisms-lemma-diagonal-unramified-morphism}.
However, then condition (2) says $\Delta_j$ is bijective on
$k$-valued points, hence $\Delta_j$ is an isomorphism, hence $j$
is a monomorphism. Then it easily follows from the commutative
diagrams that $R(T) \subset U(T) \times U(T)$ is an equivalence
relation for all schemes $T$ over $S$.
\end{proof}
\section{Group schemes}
\label{section-group-schemes}
\noindent
Let us recall that a {\it group} is a pair
$(G, m)$ where $G$ is a set, and $m : G \times G \to G$ is
a map of sets with the following properties:
\begin{enumerate}
\item (associativity) $m(g, m(g', g'')) = m(m(g, g'), g'')$
for all $g, g', g'' \in G$,
\item (identity) there exists a unique element $e \in G$
(called the {\it identity}, {\it unit}, or $1$ of $G$) such that
$m(g, e) = m(e, g) = g$ for all $g \in G$, and
\item (inverse) for all $g \in G$ there exists a $i(g) \in G$
such that $m(g, i(g)) = m(i(g), g) = e$, where $e$ is the
identity.
\end{enumerate}
Thus we obtain a map $e : \{*\} \to G$ and a map
$i : G \to G$ so that the quadruple $(G, m, e, i)$
satisfies the axioms listed above.
\medskip\noindent
A {\it homomorphism of groups} $\psi : (G, m) \to (G', m')$
is a map of sets $\psi : G \to G'$ such that
$m'(\psi(g), \psi(g')) = \psi(m(g, g'))$. This automatically
insures that $\psi(e) = e'$ and $i'(\psi(g)) = \psi(i(g))$.
(Obvious notation.) We will use this below.
\begin{definition}
\label{definition-group-scheme}
Let $S$ be a scheme.
\begin{enumerate}
\item A {\it group scheme over $S$} is a pair $(G, m)$, where
$G$ is a scheme over $S$ and $m : G \times_S G \to G$ is
a morphism of schemes over $S$ with the following property:
For every scheme $T$ over $S$ the pair $(G(T), m)$
is a group.
\item A {\it morphism $\psi : (G, m) \to (G', m')$ of group schemes over $S$}
is a morphism $\psi : G \to G'$ of schemes over $S$ such that for
every $T/S$ the induced map $\psi : G(T) \to G'(T)$ is a homomorphism
of groups.
\end{enumerate}
\end{definition}
\noindent
Let $(G, m)$ be a group scheme over the scheme $S$.
By the discussion above (and the discussion in Section \ref{section-notation})
we obtain morphisms of schemes over $S$:
(identity) $e : S \to G$ and (inverse) $i : G \to G$ such that
for every $T$ the quadruple $(G(T), m, e, i)$ satisfies the
axioms of a group listed above.
\medskip\noindent
Let $(G, m)$, $(G', m')$ be group schemes over $S$.
Let $f : G \to G'$ be a morphism of schemes over $S$.
It follows from the definition that $f$ is a morphism
of group schemes over $S$ if and only if the following diagram
is commutative:
$$
\xymatrix{
G \times_S G \ar[r]_-{f \times f} \ar[d]_m &
G' \times_S G' \ar[d]^{m'} \\
G \ar[r]^f & G'
}
$$
\begin{lemma}
\label{lemma-base-change-group-scheme}
Let $(G, m)$ be a group scheme over $S$.
Let $S' \to S$ be a morphism of schemes.
The pullback $(G_{S'}, m_{S'})$ is a group scheme over $S'$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{definition}
\label{definition-closed-subgroup-scheme}
Let $S$ be a scheme. Let $(G, m)$ be a group scheme over $S$.
\begin{enumerate}
\item A {\it closed subgroup scheme} of $G$ is a closed subscheme
$H \subset G$ such that $m|_{H \times_S H}$ factors through $H$ and induces a
group scheme structure on $H$ over $S$.
\item An {\it open subgroup scheme} of $G$ is an open subscheme
$G' \subset G$ such that $m|_{G' \times_S G'}$ factors through $G'$
and induces a group scheme structure on $G'$ over $S$.
\end{enumerate}
\end{definition}
\noindent
Alternatively, we could say that $H$ is a closed subgroup scheme of $G$
if it is a group scheme over $S$ endowed with a morphism of group schemes
$i : H \to G$ over $S$ which identifies $H$ with a closed subscheme of $G$.
\begin{lemma}
\label{lemma-closed-subgroup-scheme}
Let $S$ be a scheme. Let $(G, m, e, i)$ be a group scheme over $S$.
\begin{enumerate}
\item A closed subscheme $H \subset G$ is a closed subgroup scheme
if and only if $e : S \to G$, $m|_{H \times_S H} : H \times_S H \to G$,
and $i|_H : H \to G$ factor through $H$.
\item An open subscheme $H \subset G$ is an open subgroup scheme
if and only if $e : S \to G$, $m|_{H \times_S H} : H \times_S H \to G$,
and $i|_H : H \to G$ factor through $H$.
\end{enumerate}
\end{lemma}
\begin{proof}
Looking at $T$-valued points this translates into the well known
conditions characterizing subsets of groups as subgroups.
\end{proof}
\begin{definition}
\label{definition-smooth-group-scheme}
Let $S$ be a scheme. Let $(G, m)$ be a group scheme over $S$.
\begin{enumerate}
\item We say $G$ is a {\it smooth group scheme} if the structure
morphism $G \to S$ is smooth.
\item We say $G$ is a {\it flat group scheme} if the structure
morphism $G \to S$ is flat.
\item We say $G$ is a {\it separated group scheme} if the structure
morphism $G \to S$ is separated.
\end{enumerate}
Add more as needed.
\end{definition}
\section{Examples of group schemes}
\label{section-examples-group-schemes}
\begin{example}[Multiplicative group scheme]
\label{example-multiplicative-group}
Consider the functor which associates
to any scheme $T$ the group $\Gamma(T, \mathcal{O}_T^*)$
of units in the global sections of the structure sheaf.
This is representable by the scheme
$$
\mathbf{G}_m = \Spec(\mathbf{Z}[x, x^{-1}])
$$
The morphism giving the group structure is the morphism
\begin{eqnarray*}
\mathbf{G}_m \times \mathbf{G}_m & \to & \mathbf{G}_m \\
\Spec(\mathbf{Z}[x, x^{-1}] \otimes_{\mathbf{Z}} \mathbf{Z}[x, x^{-1}])
& \to &
\Spec(\mathbf{Z}[x, x^{-1}]) \\
\mathbf{Z}[x, x^{-1}] \otimes_{\mathbf{Z}} \mathbf{Z}[x, x^{-1}]
& \leftarrow &
\mathbf{Z}[x, x^{-1}] \\
x \otimes x & \leftarrow & x
\end{eqnarray*}
Hence we see that $\mathbf{G}_m$ is a group scheme over $\mathbf{Z}$.
For any scheme $S$ the base change $\mathbf{G}_{m, S}$ is a
group scheme over $S$ whose functor of points is
$$
T/S
\longmapsto
\mathbf{G}_{m, S}(T) = \mathbf{G}_m(T) = \Gamma(T, \mathcal{O}_T^*)
$$
as before.
\end{example}
\begin{example}[Roots of unity]
\label{example-roots-of-unity}
Let $n \in \mathbf{N}$.
Consider the functor which associates
to any scheme $T$ the subgroup of $\Gamma(T, \mathcal{O}_T^*)$
consisting of $n$th roots of unity.
This is representable by the scheme
$$
\mu_n = \Spec(\mathbf{Z}[x]/(x^n - 1)).
$$
The morphism giving the group structure is the morphism
\begin{eqnarray*}
\mu_n \times \mu_n & \to & \mu_n \\
\Spec(
\mathbf{Z}[x]/(x^n - 1)
\otimes_{\mathbf{Z}}
\mathbf{Z}[x]/(x^n - 1))
& \to &
\Spec(\mathbf{Z}[x]/(x^n - 1)) \\
\mathbf{Z}[x]/(x^n - 1) \otimes_{\mathbf{Z}} \mathbf{Z}[x]/(x^n - 1)
& \leftarrow &
\mathbf{Z}[x]/(x^n - 1) \\
x \otimes x & \leftarrow & x
\end{eqnarray*}
Hence we see that $\mu_n$ is a group scheme over $\mathbf{Z}$.
For any scheme $S$ the base change $\mu_{n, S}$ is a
group scheme over $S$ whose functor of points is
$$
T/S
\longmapsto
\mu_{n, S}(T) = \mu_n(T) = \{f \in \Gamma(T, \mathcal{O}_T^*) \mid f^n = 1\}
$$
as before.
\end{example}
\begin{example}[Additive group scheme]
\label{example-additive-group}
Consider the functor which associates
to any scheme $T$ the group $\Gamma(T, \mathcal{O}_T)$
of global sections of the structure sheaf.
This is representable by the scheme
$$
\mathbf{G}_a = \Spec(\mathbf{Z}[x])
$$
The morphism giving the group structure is the morphism
\begin{eqnarray*}
\mathbf{G}_a \times \mathbf{G}_a & \to & \mathbf{G}_a \\
\Spec(\mathbf{Z}[x] \otimes_{\mathbf{Z}} \mathbf{Z}[x])
& \to &
\Spec(\mathbf{Z}[x]) \\
\mathbf{Z}[x] \otimes_{\mathbf{Z}} \mathbf{Z}[x]
& \leftarrow &
\mathbf{Z}[x] \\
x \otimes 1 + 1 \otimes x & \leftarrow & x
\end{eqnarray*}
Hence we see that $\mathbf{G}_a$ is a group scheme over $\mathbf{Z}$.
For any scheme $S$ the base change $\mathbf{G}_{a, S}$ is a
group scheme over $S$ whose functor of points is
$$
T/S
\longmapsto
\mathbf{G}_{a, S}(T) = \mathbf{G}_a(T) = \Gamma(T, \mathcal{O}_T)
$$
as before.
\end{example}
\begin{example}[General linear group scheme]
\label{example-general-linear-group}
Let $n \geq 1$.
Consider the functor which associates
to any scheme $T$ the group
$$
\text{GL}_n(\Gamma(T, \mathcal{O}_T))
$$
of invertible $n \times n$ matrices over
the global sections of the structure sheaf.
This is representable by the scheme
$$
\text{GL}_n = \Spec(\mathbf{Z}[\{x_{ij}\}_{1 \leq i, j \leq n}][1/d])
$$
where $d = \det((x_{ij}))$ with $(x_{ij})$ the $n \times n$ matrix
with entry $x_{ij}$ in the $(i, j)$-spot.
The morphism giving the group structure is the morphism
\begin{eqnarray*}
\text{GL}_n \times \text{GL}_n & \to & \text{GL}_n \\
\Spec(\mathbf{Z}[x_{ij}, 1/d] \otimes_{\mathbf{Z}}
\mathbf{Z}[x_{ij}, 1/d])
& \to &
\Spec(\mathbf{Z}[x_{ij}, 1/d]) \\
\mathbf{Z}[x_{ij}, 1/d] \otimes_{\mathbf{Z}} \mathbf{Z}[x_{ij}, 1/d]
& \leftarrow &
\mathbf{Z}[x_{ij}, 1/d] \\
\sum x_{ik} \otimes x_{kj} & \leftarrow & x_{ij}
\end{eqnarray*}
Hence we see that $\text{GL}_n$ is a group scheme over $\mathbf{Z}$.
For any scheme $S$ the base change $\text{GL}_{n, S}$ is a
group scheme over $S$ whose functor of points is
$$
T/S
\longmapsto
\text{GL}_{n, S}(T) = \text{GL}_n(T) =\text{GL}_n(\Gamma(T, \mathcal{O}_T))
$$
as before.
\end{example}
\begin{example}
\label{example-determinant}
The determinant defines a morphism of group schemes
$$
\det : \text{GL}_n \longrightarrow \mathbf{G}_m
$$
over $\mathbf{Z}$. By base change it gives a morphism
of group schemes $\text{GL}_{n, S} \to \mathbf{G}_{m, S}$
over any base scheme $S$.
\end{example}
\begin{example}[Constant group]
\label{example-constant-group}
Let $G$ be an abstract group. Consider the functor
which associates to any scheme $T$ the group
of locally constant maps $T \to G$ (where $T$ has the Zariski topology
and $G$ the discrete topology). This is representable by the scheme
$$
G_{\Spec(\mathbf{Z})} =
\coprod\nolimits_{g \in G} \Spec(\mathbf{Z}).
$$
The morphism giving the group structure is the morphism
$$
G_{\Spec(\mathbf{Z})}
\times_{\Spec(\mathbf{Z})}
G_{\Spec(\mathbf{Z})}
\longrightarrow
G_{\Spec(\mathbf{Z})}
$$
which maps the component corresponding to the pair $(g, g')$ to the
component corresponding to $gg'$. For any scheme $S$ the base change
$G_S$ is a group scheme over $S$ whose functor of points is
$$
T/S
\longmapsto
G_S(T) = \{f : T \to G \text{ locally constant}\}
$$
as before.
\end{example}
\section{Properties of group schemes}
\label{section-properties-group-schemes}
\noindent
In this section we collect some simple properties of group schemes which
hold over any base.
\begin{lemma}
\label{lemma-group-scheme-separated}
Let $S$ be a scheme.
Let $G$ be a group scheme over $S$.
Then $G \to S$ is separated (resp.\ quasi-separated) if and only if
the identity morphism $e : S \to G$ is a closed immersion
(resp.\ quasi-compact).
\end{lemma}
\begin{proof}
We recall that by
Schemes, Lemma \ref{schemes-lemma-section-immersion}
we have that $e$ is an immersion which is a closed immersion
(resp.\ quasi-compact) if $G \to S$ is separated (resp.\ quasi-separated).
For the converse, consider the diagram
$$
\xymatrix{
G \ar[r]_-{\Delta_{G/S}} \ar[d] &
G \times_S G \ar[d]^{(g, g') \mapsto m(i(g), g')} \\
S \ar[r]^e & G
}
$$
It is an exercise in the functorial point of view in algebraic geometry
to show that this diagram is cartesian. In other words, we see that
$\Delta_{G/S}$ is a base change of $e$. Hence if $e$ is a
closed immersion (resp.\ quasi-compact) so is $\Delta_{G/S}$, see
Schemes, Lemma \ref{schemes-lemma-base-change-immersion}
(resp.\ Schemes, Lemma
\ref{schemes-lemma-quasi-compact-preserved-base-change}).
\end{proof}
\begin{lemma}
\label{lemma-flat-action-on-group-scheme}
Let $S$ be a scheme.
Let $G$ be a group scheme over $S$.
Let $T$ be a scheme over $S$ and let $\psi : T \to G$ be a morphism over $S$.
If $T$ is flat over $S$, then the morphism
$$
T \times_S G \longrightarrow G, \quad
(t, g) \longmapsto m(\psi(t), g)
$$
is flat. In particular, if $G$ is flat over $S$, then
$m : G \times_S G \to G$ is flat.
\end{lemma}
\begin{proof}
Consider the diagram
$$
\xymatrix{
T \times_S G \ar[rrr]_{(t, g) \mapsto (t, m(\psi(t), g))} & & &
T \times_S G \ar[r]_{\text{pr}} \ar[d] &
G \ar[d] \\
& & &
T \ar[r] &
S
}
$$
The left top horizontal arrow is an isomorphism and the
square is cartesian. Hence the lemma follows from
Morphisms, Lemma \ref{morphisms-lemma-base-change-flat}.
\end{proof}
\begin{lemma}
\label{lemma-group-scheme-module-differentials}
\begin{reference}
\cite[Proposition 3.15]{BookAV}
\end{reference}
Let $(G, m, e, i)$ be a group scheme over the scheme $S$.
Denote $f : G \to S$ the structure morphism.
Then there exist canonical isomorphisms
$$
\Omega_{G/S} \cong f^*\mathcal{C}_{S/G} \cong f^*e^*\Omega_{G/S}
$$
where $\mathcal{C}_{S/G}$ denotes the conormal sheaf of the
immersion $e$. In particular, if $S$ is the spectrum of a field, then
$\Omega_{G/S}$ is a free $\mathcal{O}_G$-module.
\end{lemma}
\begin{proof}
By Morphisms, Lemma \ref{morphisms-lemma-base-change-differentials} we have
$$
\Omega_{G \times_S G/G} = \text{pr}_0^*\Omega_{G/S}
$$
where on the left hand side we view $G \times_S G$ as a scheme over $G$
using $\text{pr}_1$.
Let $\tau : G \times_S G \to G \times_S G$ be the ``shearing map''
given by $(g, h) \mapsto (m(g, h), h)$ on points. This map is an automorphism
of $G \times_S G$ viewed as a scheme over $G$ via the projection $\text{pr}_1$.
Combining these two remarks we obtain an isomorphism
$$
\tau^*\text{pr}_0^*\Omega_{G/S} \to \text{pr}_0^*\Omega_{G/S}
$$
Since $\text{pr}_0 \circ \tau = m$ this can be rewritten as an isomorphism
$$
m^*\Omega_{G/S} \to \text{pr}_0^*\Omega_{G/S}
$$
Pulling back this isomorphism by
$(e \circ f, \text{id}_G) : G \to G \times_S G$
and using that $m \circ (e \circ f, \text{id}_G) = \text{id}_G$
and $\text{pr}_0 \circ (e \circ f, \text{id}_G) = e \circ f$
we obtain an isomorphism
$$
\Omega_{G/S} \to f^*e^*\Omega_{G/S}
$$
as desired. By
Morphisms, Lemma \ref{morphisms-lemma-differentials-relative-immersion-section}
we have $\mathcal{C}_{S/G} \cong e^*\Omega_{G/S}$.
If $S$ is the spectrum of a field, then
any $\mathcal{O}_S$-module on $S$ is free
and the final statement follows.
\end{proof}
\begin{lemma}
\label{lemma-group-scheme-addition-tangent-vectors}
Let $S$ be a scheme. Let $G$ be a group scheme over $S$.
Let $s \in S$. Then the composition
$$
T_{G/S, e(s)} \oplus T_{G/S, e(s)} = T_{G \times_S G/S, (e(s), e(s))}
\rightarrow T_{G/S, e(s)}
$$
is addition of tangent vectors. Here the $=$ comes from
Varieties, Lemma \ref{varieties-lemma-tangent-space-product}
and the right arrow is induced from $m : G \times_S G \to G$ via
Varieties, Lemma \ref{varieties-lemma-map-tangent-spaces}.
\end{lemma}
\begin{proof}
We will use Varieties, Equation (\ref{varieties-equation-tangent-space-fibre})
and work with tangent vectors in fibres.
An element $\theta$ in the first factor $T_{G_s/s, e(s)}$
is the image of $\theta$ via the map
$T_{G_s/s, e(s)} \to T_{G_s \times G_s/s, (e(s), e(s))}$
coming from $(1, e) : G_s \to G_s \times G_s$.
Since $m \circ (1, e) = 1$ we see that $\theta$ maps to $\theta$
by functoriality. Since the map is linear we see that
$(\theta_1, \theta_2)$ maps to $\theta_1 + \theta_2$.
\end{proof}
\section{Properties of group schemes over a field}
\label{section-properties-group-schemes-field}
\noindent
In this section we collect some properties of group schemes over a
field. In the case of group schemes which are (locally) algebraic
over a field we can say a lot more, see
Section \ref{section-algebraic-group-schemes}.
\begin{lemma}
\label{lemma-group-scheme-over-field-open-multiplication}
If $(G, m)$ is a group scheme over a field $k$, then the
multiplication map $m : G \times_k G \to G$ is open.
\end{lemma}
\begin{proof}
The multiplication map is isomorphic to the projection map
$\text{pr}_0 : G \times_k G \to G$
because the diagram
$$
\xymatrix{
G \times_k G \ar[d]^m \ar[rrr]_{(g, g') \mapsto (m(g, g'), g')} & & &
G \times_k G \ar[d]^{(g, g') \mapsto g} \\
G \ar[rrr]^{\text{id}} & & & G
}
$$
is commutative with isomorphisms as horizontal arrows. The projection
is open by
Morphisms, Lemma \ref{morphisms-lemma-scheme-over-field-universally-open}.
\end{proof}
\begin{lemma}
\label{lemma-group-scheme-over-field-translate-open}
If $(G, m)$ is a group scheme over a field $k$. Let $U \subset G$
open and $T \to G$ a morphism of schemes. Then the image of the
composition $T \times_k U \to G \times_k G \to G$ is open.
\end{lemma}
\begin{proof}
For any field extension $K/k$ the morphism $G_K \to G$ is open
(Morphisms, Lemma \ref{morphisms-lemma-scheme-over-field-universally-open}).
Every point $\xi$ of $T \times_k U$ is the image of a morphism
$(t, u) : \Spec(K) \to T \times_k U$ for some $K$. Then the image of
$T_K \times_K U_K = (T \times_k U)_K \to G_K$ contains the translate
$t \cdot U_K$ which is open. Combining these facts we see that the
image of $T \times_k U \to G$ contains an open neighbourhood of
the image of $\xi$. Since $\xi$ was arbitrary we win.
\end{proof}
\begin{lemma}
\label{lemma-group-scheme-over-field-separated}
Let $G$ be a group scheme over a field.
Then $G$ is a separated scheme.
\end{lemma}
\begin{proof}
Say $S = \Spec(k)$ with $k$ a field, and let $G$ be a group scheme
over $S$. By
Lemma \ref{lemma-group-scheme-separated}
we have to show that $e : S \to G$ is a closed immersion. By
Morphisms, Lemma
\ref{morphisms-lemma-algebraic-residue-field-extension-closed-point-fibre}
the image of $e : S \to G$ is a closed point of $G$.
It is clear that $\mathcal{O}_G \to e_*\mathcal{O}_S$ is surjective,
since $e_*\mathcal{O}_S$ is a skyscraper sheaf supported at the neutral
element of $G$ with value $k$. We conclude that $e$ is a closed immersion by
Schemes, Lemma \ref{schemes-lemma-characterize-closed-immersions}.
\end{proof}
\begin{lemma}
\label{lemma-group-scheme-field-geometrically-irreducible}
Let $G$ be a group scheme over a field $k$.
Then
\begin{enumerate}
\item every local ring $\mathcal{O}_{G, g}$ of $G$ has a unique
minimal prime ideal,
\item there is exactly one irreducible component $Z$ of $G$
passing through $e$, and
\item $Z$ is geometrically irreducible over $k$.
\end{enumerate}
\end{lemma}
\begin{proof}
For any point $g \in G$ there exists a field extension
$K/k$ and a $K$-valued point $g' \in G(K)$ mapping to
$g$. If we think of $g'$ as a $K$-rational point of the
group scheme $G_K$, then we see that
$\mathcal{O}_{G, g} \to \mathcal{O}_{G_K, g'}$ is a faithfully flat
local ring map (as $G_K \to G$ is flat, and a local flat ring map
is faithfully flat, see
Algebra, Lemma \ref{algebra-lemma-local-flat-ff}).
The result for $\mathcal{O}_{G_K, g'}$ implies the
result for $\mathcal{O}_{G, g}$, see
Algebra, Lemma \ref{algebra-lemma-injective-minimal-primes-in-image}.
Hence in order to prove (1) it suffices to
prove it for $k$-rational points $g$ of $G$. In this case
translation by $g$ defines an automorphism $G \to G$
which maps $e$ to $g$. Hence $\mathcal{O}_{G, g} \cong \mathcal{O}_{G, e}$.
In this way we see that (2) implies (1), since irreducible components
passing through $e$ correspond one to one with minimal prime ideals
of $\mathcal{O}_{G, e}$.
\medskip\noindent
In order to prove (2) and (3) it suffices to prove (2) when $k$
is algebraically closed. In this case, let $Z_1$, $Z_2$ be two
irreducible components of $G$ passing through $e$.
Since $k$ is algebraically closed the closed subscheme
$Z_1 \times_k Z_2 \subset G \times_k G$ is irreducible too, see
Varieties, Lemma \ref{varieties-lemma-bijection-irreducible-components}.
Hence $m(Z_1 \times_k Z_2)$ is contained in an irreducible
component of $G$. On the other hand it contains
$Z_1$ and $Z_2$ since $m|_{e \times G} = \text{id}_G$ and
$m|_{G \times e} = \text{id}_G$. We conclude $Z_1 = Z_2$ as desired.
\end{proof}
\begin{remark}
\label{remark-warning-group-scheme-geometrically-irreducible}
Warning: The result of
Lemma \ref{lemma-group-scheme-field-geometrically-irreducible}
does not mean that every irreducible component of $G/k$ is
geometrically irreducible. For example the group scheme
$\mu_{3, \mathbf{Q}} = \Spec(\mathbf{Q}[x]/(x^3 - 1))$
over $\mathbf{Q}$ has two irreducible components corresponding
to the factorization $x^3 - 1 = (x - 1)(x^2 + x + 1)$.
The first factor corresponds to the irreducible component
passing through the identity, and the second irreducible component
is not geometrically irreducible over $\Spec(\mathbf{Q})$.
\end{remark}
\begin{lemma}
\label{lemma-reduced-subgroup-scheme-perfect}
Let $G$ be a group scheme over a perfect field $k$.
Then the reduction $G_{red}$ of $G$ is a closed subgroup scheme of $G$.
\end{lemma}
\begin{proof}
Omitted. Hint: Use that $G_{red} \times_k G_{red}$ is reduced by
Varieties, Lemmas \ref{varieties-lemma-perfect-reduced} and
\ref{varieties-lemma-geometrically-reduced-any-base-change}.
\end{proof}
\begin{lemma}
\label{lemma-open-subgroup-closed-over-field}
Let $k$ be a field. Let $\psi : G' \to G$ be a morphism of group schemes
over $k$. If $\psi(G')$ is open in $G$, then $\psi(G')$ is closed in $G$.
\end{lemma}
\begin{proof}
Let $U = \psi(G') \subset G$. Let $Z = G \setminus \psi(G') = G \setminus U$
with the reduced induced closed subscheme structure. By
Lemma \ref{lemma-group-scheme-over-field-translate-open}
the image of
$$
Z \times_k G' \longrightarrow
Z \times_k U \longrightarrow G
$$
is open (the first arrow is surjective). On the other hand, since $\psi$
is a homomorphism of group schemes, the image of $Z \times_k G' \to G$
is contained in $Z$ (because translation by $\psi(g')$ preserves
$U$ for all points $g'$ of $G'$; small detail omitted).
Hence $Z \subset G$ is an open subset (although not
necessarily an open subscheme). Thus $U = \psi(G')$ is closed.
\end{proof}
\begin{lemma}
\label{lemma-immersion-group-schemes-closed-over-field}
Let $i : G' \to G$ be an immersion of group schemes over a field $k$.
Then $i$ is a closed immersion, i.e., $i(G')$ is a closed subgroup scheme
of $G$.
\end{lemma}
\begin{proof}
To show that $i$ is a closed immersion it suffices to show that
$i(G')$ is a closed subset of $G$. Let $k \subset k'$ be a perfect
extension of $k$. If $i(G'_{k'}) \subset G_{k'}$ is closed, then
$i(G') \subset G$ is closed by
Morphisms, Lemma \ref{morphisms-lemma-fpqc-quotient-topology}
(as $G_{k'} \to G$ is flat, quasi-compact and surjective).
Hence we may and do assume $k$ is perfect. We will use without further
mention that products of reduced schemes over $k$ are reduced.
We may replace $G'$ and $G$ by their reductions, see
Lemma \ref{lemma-reduced-subgroup-scheme-perfect}.
Let $\overline{G'} \subset G$ be the closure of $i(G')$ viewed
as a reduced closed subscheme. By
Varieties, Lemma \ref{varieties-lemma-closure-of-product}
we conclude that $\overline{G'} \times_k \overline{G'}$
is the closure of the image of $G' \times_k G' \to G \times_k G$. Hence
$$
m\Big(\overline{G'} \times_k \overline{G'}\Big)
\subset \overline{G'}
$$
as $m$ is continuous. It follows that $\overline{G'} \subset G$
is a (reduced) closed subgroup scheme. By
Lemma \ref{lemma-open-subgroup-closed-over-field}
we see that $i(G') \subset \overline{G'}$ is also closed
which implies that $i(G') = \overline{G'}$ as desired.
\end{proof}
\begin{lemma}
\label{lemma-irreducible-group-scheme-over-field-qc}
Let $G$ be a group scheme over a field $k$. If $G$ is irreducible,
then $G$ is quasi-compact.
\end{lemma}
\begin{proof}
Suppose that $K/k$ is a field extension. If $G_K$
is quasi-compact, then $G$ is too as $G_K \to G$ is surjective.
By Lemma \ref{lemma-group-scheme-field-geometrically-irreducible}
we see that $G_K$ is irreducible. Hence it suffices to prove the lemma
after replacing $k$ by some extension. Choose $K$ to be an algebraically
closed field extension of very large cardinality. Then by
Varieties, Lemma \ref{varieties-lemma-make-Jacobson},
we see that $G_K$ is a Jacobson scheme all of whose closed points have residue
field equal to $K$. In other words we may assume $G$ is a Jacobson
scheme all of whose closed points have residue field $k$.
\medskip\noindent
Let $U \subset G$ be a nonempty affine open. Let $g \in G(k)$. Then
$gU \cap U \not = \emptyset$. Hence we see that $g$ is in the image
of the morphism
$$
U \times_{\Spec(k)} U \longrightarrow G, \quad
(u_1, u_2) \longmapsto u_1u_2^{-1}
$$
Since the image of this morphism is open
(Lemma \ref{lemma-group-scheme-over-field-open-multiplication})
we see that the image is all of $G$ (because $G$ is Jacobson
and closed points are $k$-rational).
Since $U$ is affine, so is $U \times_{\Spec(k)} U$. Hence $G$ is the
image of a quasi-compact scheme, hence quasi-compact.
\end{proof}
\begin{lemma}
\label{lemma-connected-group-scheme-over-field-irreducible}
Let $G$ be a group scheme over a field $k$. If $G$ is connected,
then $G$ is irreducible.
\end{lemma}
\begin{proof}
By Varieties, Lemma
\ref{varieties-lemma-geometrically-connected-if-connected-and-point}
we see that $G$ is geometrically connected. If we show that $G_K$
is irreducible for some field extension $K/k$, then
the lemma follows. Hence we may apply
Varieties, Lemma \ref{varieties-lemma-make-Jacobson}
to reduce to the case where $k$ is algebraically closed,
$G$ is a Jacobson scheme, and all the closed points are $k$-rational.
\medskip\noindent
Let $Z \subset G$ be the unique irreducible component of $G$ passing
through the neutral element, see
Lemma \ref{lemma-group-scheme-field-geometrically-irreducible}.
Endowing $Z$ with the reduced induced closed subscheme structure,
we see that $Z \times_k Z$ is reduced and irreducible
(Varieties, Lemmas
\ref{varieties-lemma-geometrically-reduced-any-base-change} and
\ref{varieties-lemma-bijection-irreducible-components}).
We conclude that $m|_{Z \times_k Z} : Z \times_k Z \to G$ factors
through $Z$. Hence $Z$ becomes a closed subgroup scheme of $G$.
\medskip\noindent
To get a contradiction, assume there exists another irreducible
component $Z' \subset G$. Then $Z \cap Z' = \emptyset$ by
Lemma \ref{lemma-group-scheme-field-geometrically-irreducible}.
By Lemma \ref{lemma-irreducible-group-scheme-over-field-qc}
we see that $Z$ is quasi-compact. Thus we may choose a quasi-compact open
$U \subset G$ with $Z \subset U$ and $U \cap Z' = \emptyset$.
The image $W$ of $Z \times_k U \to G$ is open in $G$ by
Lemma \ref{lemma-group-scheme-over-field-translate-open}.
On the other hand, $W$ is quasi-compact as the image of a
quasi-compact space. We claim that $W$ is closed.
\medskip\noindent
Proof of the claim. Since $W$ is quasi-compact, we see that
points in the closure of $W$ are specializations of points of $W$
(Morphisms, Lemma \ref{morphisms-lemma-reach-points-scheme-theoretic-image}).
Thus we have to show that any irreducible
component $Z'' \subset G$ of $G$ which meets $W$ is contained in $W$.
As $G$ is Jacobson and closed points are rational,
$Z'' \cap W$ has a rational point
$g \in Z''(k) \cap W(k)$ and hence $Z'' = Zg$. But $W = m(Z \times_k W)$
by construction, so $Z'' \cap W \not = \emptyset$ implies
$Z'' \subset W$.
\medskip\noindent