-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathresolve.tex
5009 lines (4592 loc) · 198 KB
/
resolve.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Resolution of Surfaces}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This chapter discusses resolution of singularities of surfaces
following Lipman \cite{Lipman} and mostly following the exposition of
Artin in \cite{Artin-Lipman}. The main result
(Theorem \ref{theorem-resolve}) tells us that a Noetherian
$2$-dimensional scheme $Y$ has a resolution of singularities when
it has a finite normalization $Y^\nu \to Y$ with
finitely many singular points $y_i \in Y^\nu$ and for each $i$ the completion
$\mathcal{O}_{Y^\nu, y_i}^\wedge$ is normal.
\medskip\noindent
To be sure, if $Y$ is a $2$-dimensional scheme of finite type over
a quasi-excellent base ring $R$ (for example a field or a
Dedekind domain with fraction field of characteristic $0$
such as $\mathbf{Z}$) then the normalization of $Y$ is finite,
has finitely many singular points, and the completions of the
local rings are normal. See the discussion in
More on Algebra, Sections
\ref{more-algebra-section-singular-locus},
\ref{more-algebra-section-G-ring}, and
\ref{more-algebra-section-excellent}
and
More on Algebra, Lemma \ref{more-algebra-lemma-normal-goes-up}.
Thus such a $Y$ has a resolution of singularities.
\medskip\noindent
A rough outline of the proof is as follows. Let $A$ be a
Noetherian local domain of dimension $2$. The steps of the proof
are as follows
\begin{enumerate}
\item[N] replace $A$ by its normalization,
\item[V] prove Grauert-Riemenschneider,
\item[B] show there is a maximum $g$ of the lengths of
$H^1(X, \mathcal{O}_X)$ over all normal modifications $X \to \Spec(A)$
and reduce to the case $g = 0$,
\item[R] we say $A$ defines a rational singularity if $g = 0$
and in this case after a finite number of
blowups we may assume $A$ is Gorenstein and $g = 0$,
\item[D] we say $A$ defines a rational double point if
$g = 0$ and $A$ is Gorenstein and in this case we
explicitly resolve singularities.
\end{enumerate}
Each of these steps needs assumptions on the ring $A$.
We will discuss each of these in turn.
\medskip\noindent
Ad N: Here we need to assume that $A$ has a finite normalization
(this is not automatic). Throughout most of the chapter we will
assume that our scheme is Nagata if we need to know some normalization
is finite. However, being Nagata is a slightly stronger condition
than is given to us in the statement of the theorem.
A solution to this (slight) problem would have been to use that
our ring $A$ is formally unramified (i.e., its completion
is reduced) and to use Lemma \ref{lemma-formally-unramified}.
However, the way our proof works, it turns out it is easier to
use Lemma \ref{lemma-normalization-completion}
to lift finiteness of the normalization over the
completion to finiteness of the normalization over $A$.
\medskip\noindent
Ad V: This is Proposition \ref{proposition-Grauert-Riemenschneider}
and it roughly states that for a normal modification $f : X \to \Spec(A)$
one has $R^1f_*\omega_X = 0$ where $\omega_X$ is the dualizing module
of $X/A$ (Remark \ref{remark-dualizing-setup}).
In fact, by duality the result is equivalent to a statement
(Lemma \ref{lemma-R1-injective})
about the object $Rf_*\mathcal{O}_X$ in the {\it derived category} $D(A)$.
Having said this, the proof uses the standard fact that
components of the special fibre have positive conormal
sheaves (Lemma \ref{lemma-nontrivial-normal-bundle}).
\medskip\noindent
Ad B: This is in some sense the most subtle part of the proof.
In the end we only need to use the output of this step when $A$
is a complete Noetherian local ring, although the writeup is a
bit more general. The terminology is set in
Definition \ref{definition-reduce-to-rational}.
If $g$ (as defined above) is bounded, then a straightforward
argument shows that we can find a normal modification $X \to \Spec(A)$
such that all singular points of $X$ are rational singularities, see
Lemma \ref{lemma-reduce-to-rational}. We show that given a finite extension
$A \subset B$, then $g$ is bounded for $B$ if it is bounded for $A$
in the following two cases: (1) if the fraction field extension
is separable, see Lemma \ref{lemma-reduce-to-rational} and
(2) if the fraction field extension has degree $p$,
the characteristic is $p$, and $A$ is regular and complete, see
Lemma \ref{lemma-go-up-degree-p}.
\medskip\noindent
Ad R: Here we reduce the case $g = 0$ to the Gorenstein case.
A marvellous fact, which makes everything work, is that the
blowing up of a rational surface singularity is normal, see
Lemma \ref{lemma-blow-up-normal-rational}.
\medskip\noindent
Ad D: The resolution of rational double points proceeds more or
less by hand, see
Section \ref{section-rational-double-points}.
A rational double point
is a hypersurface singularity (this is true but we don't prove it
as we don't need it). The local equation looks like
$$
a_{11} x_1^2 + a_{12} x_1x_2 + a_{13}x_1x_3 + a_{22} x_2^2 +
a_{23} x_2x_3 + a_{33} x_3^2 =
\sum a_{ijk} x_ix_jx_k
$$
Using that the quadratic part cannot be zero because the multiplicity
is $2$ and remains $2$ after any blowup and the fact that every blowup
is normal one quickly achieves a resolution. One twist is that we
do not have an invariant which decreases every blowup, but we rely
on the material on formal arcs from Section \ref{section-arcs}
to demonstrate that the process stops.
\medskip\noindent
To put everything together some additional work has
to be done. The main kink is that we want to lift a resolution
of the completion $A^\wedge$ to a resolution of $\Spec(A)$.
In order to do this we first show that if a resolution exists,
then there is a resolution by normalized blowups
(Lemma \ref{lemma-existence-implies-existence-by-normalized-blowing-ups}).
A sequence of normalized blowups can be lifted from the completion
by Lemma \ref{lemma-normalized-blowup-completion}.
We then use this even in the proof of resolution of complete
local rings $A$ because our strategy works by induction
on the degree of a finite inclusion $A_0 \subset A$ with
$A_0$ regular, see Lemma \ref{lemma-resolve-complete}.
With a stronger result in B (such as is proved in Lipman's paper)
this step could be avoided.
\section{A trace map in positive characteristic}
\label{section-trace}
\noindent
Some of the results in this section can be deduced from the much more
general discussion on traces on differential forms in
de Rham Cohomology, Section \ref{derham-section-trace}.
See Remark \ref{remark-compare-Garel} for a discussion.
\medskip\noindent
We fix a prime number $p$. Let $R$ be an $\mathbf{F}_p$-algebra.
Given an $a \in R$ set $S = R[x]/(x^p - a)$. Define an $R$-linear map
$$
\text{Tr}_x : \Omega_{S/R} \longrightarrow \Omega_R
$$
by the rule
$$
x^i\text{d}x \longmapsto
\left\{
\begin{matrix}
0 & \text{if} & 0 \leq i \leq p - 2, \\
\text{d}a & \text{if} & i = p - 1
\end{matrix}
\right.
$$
This makes sense as $\Omega_{S/R}$ is a free $R$-module with
basis $x^i\text{d}x$, $0 \leq i \leq p - 1$.
The following lemma implies that the trace map is well defined,
i.e., independent of the choice of the coordinate $x$.
\begin{lemma}
\label{lemma-trace-well-defined}
Let $\varphi : R[x]/(x^p - a) \to R[y]/(y^p - b)$ be an $R$-algebra
homomorphism. Then $\text{Tr}_x = \text{Tr}_y \circ \varphi$.
\end{lemma}
\begin{proof}
Say $\varphi(x) = \lambda_0 + \lambda_1 y + \ldots + \lambda_{p - 1}y^{p - 1}$
with $\lambda_i \in R$. The condition that mapping $x$ to
$\lambda_0 + \lambda_1 y + \ldots + \lambda_{p - 1}y^{p - 1}$
induces an $R$-algebra homomorphism $R[x]/(x^p - a) \to R[y]/(y^p - b)$
is equivalent to the condition that
$$
a = \lambda_0^p + \lambda_1^p b + \ldots + \lambda_{p - 1}^pb^{p - 1}
$$
in the ring $R$. Consider the polynomial ring
$$
R_{univ} = \mathbf{F}_p[b, \lambda_0, \ldots, \lambda_{p - 1}]
$$
with the element
$a = \lambda_0^p + \lambda_1^p b + \ldots + \lambda_{p - 1}^pb^{p - 1}$
Consider the universal algebra map
$\varphi_{univ} : R_{univ}[x]/(x^p - a) \to R_{univ}[y]/(y^p - b)$
given by mapping $x$ to
$\lambda_0 + \lambda_1 y + \ldots + \lambda_{p - 1}y^{p - 1}$.
We obtain a canonical map
$$
R_{univ} \longrightarrow R
$$
sending $b, \lambda_i$ to $b, \lambda_i$. By construction we get a
commutative diagram
$$
\xymatrix{
R_{univ}[x]/(x^p - a) \ar[r] \ar[d]_{\varphi_{univ}} &
R[x]/(x^p - a) \ar[d]^\varphi \\
R_{univ}[y]/(y^p - b) \ar[r] & R[y]/(y^p - b)
}
$$
and the horizontal arrows are compatible with the trace maps. Hence it
suffices to prove the lemma for the map $\varphi_{univ}$. Thus we may
assume $R = \mathbf{F}_p[b, \lambda_0, \ldots, \lambda_{p - 1}]$
is a polynomial ring. We will check the lemma holds in this case
by evaluating
$\text{Tr}_y(\varphi(x)^i\text{d}\varphi(x))$ for $i = 0 , \ldots, p - 1$.
\medskip\noindent
The case $0 \leq i \leq p - 2$. Expand
$$
(\lambda_0 + \lambda_1 y + \ldots + \lambda_{p - 1}y^{p - 1})^i
(\lambda_1 + 2 \lambda_2 y + \ldots + (p - 1)\lambda_{p - 1}y^{p - 2})
$$
in the ring $R[y]/(y^p - b)$. We have to show that the coefficient
of $y^{p - 1}$ is zero. For this it suffices to show that
the expression above as a polynomial in $y$ has vanishing
coefficients in front of the powers $y^{pk - 1}$.
Then we write our polynomial as
$$
\frac{\text{d}}{(i + 1)\text{d}y}
(\lambda_0 + \lambda_1 y + \ldots + \lambda_{p - 1}y^{p - 1})^{i + 1}
$$
and indeed the coefficients of $y^{kp - 1}$ are all zero.
\medskip\noindent
The case $i = p - 1$. Expand
$$
(\lambda_0 + \lambda_1 y + \ldots + \lambda_{p - 1}y^{p - 1})^{p - 1}
(\lambda_1 + 2 \lambda_2 y + \ldots + (p - 1)\lambda_{p - 1}y^{p - 2})
$$
in the ring $R[y]/(y^p - b)$. To finish the proof we have to show that
the coefficient of $y^{p - 1}$ times $\text{d}b$ is $\text{d}a$.
Here we use that $R$ is $S/pS$ where
$S = \mathbf{Z}[b, \lambda_0, \ldots, \lambda_{p - 1}]$.
Then the above, as a polynomial in $y$, is equal to
$$
\frac{\text{d}}{p\text{d}y}
(\lambda_0 + \lambda_1 y + \ldots + \lambda_{p - 1}y^{p - 1})^p
$$
Since $\frac{\text{d}}{\text{d}y}(y^{pk}) = pk y^{pk - 1}$
it suffices to understand the coefficients of $y^{pk}$ in the polynomial
$(\lambda_0 + \lambda_1 y + \ldots + \lambda_{p - 1}y^{p - 1})^p$
modulo $p$. The sum of these terms gives
$$
\lambda_0^p + \lambda_1^py^p + \ldots + \lambda_{p - 1}^py^{p(p - 1)}
\bmod p
$$
Whence we see that we obtain after applying the operator
$\frac{\text{d}}{p\text{d}y}$ and after reducing modulo $y^p - b$
the value
$$
\lambda_1^p + 2\lambda_2^pb + \ldots + (p - 1)\lambda_{p - 1}b^{p - 2}
$$
for the coefficient of $y^{p - 1}$ we wanted to compute. Now because
$a = \lambda_0^p + \lambda_1^p b + \ldots + \lambda_{p - 1}^pb^{p - 1}$
in $R$ we obtain that
$$
\text{d}a = (\lambda_1^p + 2 \lambda_2^p b + \ldots +
(p - 1) \lambda_{p - 1}^p b^{p - 2}) \text{d}b
$$
in $R$. This proves that the coefficient of $y^{p - 1}$ is as desired.
\end{proof}
\begin{lemma}
\label{lemma-trace-higher}
Let $\mathbf{F}_p \subset \Lambda \subset R \subset S$ be ring extensions
and assume that $S$ is isomorphic to $R[x]/(x^p - a)$ for some $a \in R$.
Then there are canonical $R$-linear maps
$$
\text{Tr} :
\Omega^{t + 1}_{S/\Lambda}
\longrightarrow
\Omega_{R/\Lambda}^{t + 1}
$$
for $t \geq 0$ such that
$$
\eta_1 \wedge \ldots \wedge \eta_t \wedge x^i\text{d}x
\longmapsto
\left\{
\begin{matrix}
0 & \text{if} & 0 \leq i \leq p - 2, \\
\eta_1 \wedge \ldots \wedge \eta_t \wedge \text{d}a & \text{if} & i = p - 1
\end{matrix}
\right.
$$
for $\eta_i \in \Omega_{R/\Lambda}$ and such that $\text{Tr}$ annihilates the
image of
$S \otimes_R \Omega_{R/\Lambda}^{t + 1} \to \Omega_{S/\Lambda}^{t + 1}$.
\end{lemma}
\begin{proof}
For $t = 0$ we use the composition
$$
\Omega_{S/\Lambda} \to \Omega_{S/R} \to \Omega_R \to \Omega_{R/\Lambda}
$$
where the second map is Lemma \ref{lemma-trace-well-defined}.
There is an exact sequence
$$
H_1(L_{S/R}) \xrightarrow{\delta} \Omega_{R/\Lambda} \otimes_R S \to
\Omega_{S/\Lambda} \to \Omega_{S/R} \to 0
$$
(Algebra, Lemma \ref{algebra-lemma-exact-sequence-NL}).
The module $\Omega_{S/R}$ is free over $S$ with basis $\text{d}x$
and the module $H_1(L_{S/R})$ is free over $S$ with basis $x^p - a$
which $\delta$ maps to $-\text{d}a \otimes 1$ in
$\Omega_{R/\Lambda} \otimes_R S$. In particular, if we set
$$
M = \Coker(R \to \Omega_{R/\Lambda}, 1 \mapsto -\text{d}a)
$$
then we see that $\Coker(\delta) = M \otimes_R S$. We obtain a
canonical map
$$
\Omega^{t + 1}_{S/\Lambda} \to
\wedge_S^t(\Coker(\delta)) \otimes_S \Omega_{S/R} =
\wedge^t_R(M) \otimes_R \Omega_{S/R}
$$
Now, since the image of the map
$\text{Tr} : \Omega_{S/R} \to \Omega_{R/\Lambda}$
of Lemma \ref{lemma-trace-well-defined} is contained in $R\text{d}a$ we
see that wedging with an element in the image annihilates $\text{d}a$.
Hence there is a canonical map
$$
\wedge^t_R(M) \otimes_R \Omega_{S/R} \to \Omega_{R/\Lambda}^{t + 1}
$$
mapping
$\overline{\eta}_1 \wedge \ldots \wedge \overline{\eta}_t \wedge \omega$
to $\eta_1 \wedge \ldots \wedge \eta_t \wedge \text{Tr}(\omega)$.
\end{proof}
\begin{remark}
\label{remark-compare-Garel}
Let $\mathbf{F}_p \subset \Lambda \subset R \subset S$ and $\text{Tr}$
be as in Lemma \ref{lemma-trace-higher}. By
de Rham Cohomology, Proposition \ref{derham-proposition-Garel}
there is a canonical map of complexes
$$
\Theta_{S/R} :
\Omega_{S/\Lambda}^\bullet
\longrightarrow
\Omega_{R/\Lambda}^\bullet
$$
The computation in de Rham Cohomology, Example \ref{derham-example-Garel}
shows that $\Theta_{S/R}(x^i \text{d}x) = \text{Tr}_x(x^i\text{d}x)$
for all $i$. Since $\text{Trace}_{S/R} = \Theta^0_{S/R}$
is identically zero and since
$$
\Theta_{S/R}(a \wedge b) = a \wedge \Theta_{S/R}(b)
$$
for $a \in \Omega^i_{R/\Lambda}$ and $b \in \Omega^j_{S/\Lambda}$
it follows that $\text{Tr} = \Theta_{S/R}$. The advantage of using $\text{Tr}$
is that it is a good deal more elementary to construct.
\end{remark}
\begin{lemma}
\label{lemma-trace-extends}
Let $S$ be a scheme over $\mathbf{F}_p$. Let $f : Y \to X$ be a finite morphism
of Noetherian normal integral schemes over $S$. Assume
\begin{enumerate}
\item the extension of function fields is purely inseparable of degree $p$, and
\item $\Omega_{X/S}$ is a coherent $\mathcal{O}_X$-module (for example
if $X$ is of finite type over $S$).
\end{enumerate}
For $i \geq 1$ there is a canonical map
$$
\text{Tr} : f_*\Omega^i_{Y/S} \longrightarrow (\Omega_{X/S}^i)^{**}
$$
whose stalk in the generic point of $X$ recovers the trace map of
Lemma \ref{lemma-trace-higher}.
\end{lemma}
\begin{proof}
The exact sequence $f^*\Omega_{X/S} \to \Omega_{Y/S} \to \Omega_{Y/X} \to 0$
shows that $\Omega_{Y/S}$ and hence $f_*\Omega_{Y/S}$ are coherent modules
as well. Thus it suffices to prove the trace map in the generic point
extends to stalks at $x \in X$ with $\dim(\mathcal{O}_{X, x}) = 1$, see
Divisors, Lemma \ref{divisors-lemma-describe-reflexive-hull}.
Thus we reduce to the case discussed in the next paragraph.
\medskip\noindent
Assume $X = \Spec(A)$ and $Y = \Spec(B)$ with $A$ a discrete valuation
ring and $B$ finite over $A$. Since the induced extension $L/K$
of fraction fields is purely inseparable, we see that $B$ is local too.
Hence $B$ is a discrete valuation ring too. Then either
\begin{enumerate}
\item $B/A$ has ramification index $p$ and hence $B = A[x]/(x^p - a)$
where $a \in A$ is a uniformizer, or
\item $\mathfrak m_B = \mathfrak m_A B$ and the residue field
$B/\mathfrak m_A B$ is purely inseparable of degree $p$ over
$\kappa_A = A/\mathfrak m_A$.
Choose any $x \in B$ whose residue class is not in $\kappa_A$
and then we'll have $B = A[x]/(x^p - a)$ where $a \in A$ is
a unit.
\end{enumerate}
Let $\Spec(\Lambda) \subset S$ be an affine open such that
$X$ maps into $\Spec(\Lambda)$. Then we can apply
Lemma \ref{lemma-trace-higher}
to see that the trace map extends to
$\Omega^i_{B/\Lambda} \to \Omega^i_{A/\Lambda}$
for all $i \geq 1$.
\end{proof}
\section{Quadratic transformations}
\label{section-quadratic}
\noindent
In this section we study what happens when we blow up a nonsingular point
on a surface. We hesitate the formally define such a morphism as a
{\it quadratic transformation} as on the one hand often other names are
used and on the other hand the phrase ``quadratic transformation'' is
sometimes used with a different meaning.
\begin{lemma}
\label{lemma-blowup}
Let $(A, \mathfrak m, \kappa)$ be a regular local ring of dimension $2$.
Let $f : X \to S = \Spec(A)$ be the blowing up of $A$ in $\mathfrak m$
wotj exceptional divisor $E$. There is a closed immersion
$$
r : X \longrightarrow \mathbf{P}^1_S
$$
over $S$ such that
\begin{enumerate}
\item $r|_E : E \to \mathbf{P}^1_\kappa$ is an isomorphism,
\item $\mathcal{O}_X(E) = \mathcal{O}_X(-1) =
r^*\mathcal{O}_{\mathbf{P}^1}(-1)$, and
\item $\mathcal{C}_{E/X} = (r|_E)^*\mathcal{O}_{\mathbf{P}^1}(1)$ and
$\mathcal{N}_{E/X} = (r|_E)^*\mathcal{O}_{\mathbf{P}^1}(-1)$.
\end{enumerate}
\end{lemma}
\begin{proof}
As $A$ is regular of dimension $2$ we can write $\mathfrak m = (x, y)$.
Then $x$ and $y$ placed in degree $1$ generate the Rees algebra
$\bigoplus_{n \geq 0} \mathfrak m^n$ over $A$. Recall that
$X = \text{Proj}(\bigoplus_{n \geq 0} \mathfrak m^n)$, see
Divisors, Lemma \ref{divisors-lemma-blowing-up-affine}.
Thus the surjection
$$
A[T_0, T_1] \longrightarrow \bigoplus\nolimits_{n \geq 0} \mathfrak m^n,
\quad
T_0 \mapsto x,\ T_1 \mapsto y
$$
of graded $A$-algebras induces a closed immersion
$r : X \to \mathbf{P}^1_S = \text{Proj}(A[T_0, T_1])$
such that $\mathcal{O}_X(1) = r^*\mathcal{O}_{\mathbf{P}^1_S}(1)$, see
Constructions, Lemma
\ref{constructions-lemma-surjective-graded-rings-generated-degree-1-map-proj}.
This proves (2) because $\mathcal{O}_X(E) = \mathcal{O}_X(-1)$
by Divisors, Lemma
\ref{divisors-lemma-blowing-up-gives-effective-Cartier-divisor}.
\medskip\noindent
To prove (1) note that
$$
\left(\bigoplus\nolimits_{n \geq 0} \mathfrak m^n\right) \otimes_A \kappa =
\bigoplus\nolimits_{n \geq 0} \mathfrak m^n/\mathfrak m^{n + 1} \cong
\kappa[\overline{x}, \overline{y}]
$$
a polynomial algebra, see Algebra, Lemma \ref{algebra-lemma-regular-graded}.
This proves that the fibre of $X \to S$ over $\Spec(\kappa)$ is equal to
$\text{Proj}(\kappa[\overline{x}, \overline{y}]) = \mathbf{P}^1_\kappa$, see
Constructions, Lemma \ref{constructions-lemma-base-change-map-proj}.
Recall that $E$ is the closed subscheme of $X$ defined by
$\mathfrak m\mathcal{O}_X$, i.e., $E = X_\kappa$.
By our choice of the morphism $r$ we see that $r|_E$ in fact
produces the identification of $E = X_\kappa$ with the special
fibre of $\mathbf{P}^1_S \to S$.
\medskip\noindent
Part (3) follows from (1) and (2) and Divisors, Lemma
\ref{divisors-lemma-conormal-effective-Cartier-divisor}.
\end{proof}
\begin{lemma}
\label{lemma-blowup-regular}
Let $(A, \mathfrak m, \kappa)$ be a regular local ring of dimension $2$.
Let $f : X \to S = \Spec(A)$ be the blowing up of $A$ in $\mathfrak m$.
Then $X$ is an irreducible regular scheme.
\end{lemma}
\begin{proof}
Observe that $X$ is integral by
Divisors, Lemma \ref{divisors-lemma-blow-up-integral-scheme}
and
Algebra, Lemma \ref{algebra-lemma-regular-domain}.
To see $X$ is regular it suffices to check that $\mathcal{O}_{X, x}$
is regular for closed points $x \in X$, see
Properties, Lemma \ref{properties-lemma-characterize-regular}.
Let $x \in X$ be a closed point. Since $f$ is proper $x$ maps to
$\mathfrak m$, i.e., $x$ is a point of the exceptional divisor $E$.
Then $E$ is an effective Cartier divisor and $E \cong \mathbf{P}^1_\kappa$.
Thus if $g \in \mathfrak m_x \subset \mathcal{O}_{X, x}$ is a local
equation for $E$, then
$\mathcal{O}_{X, x}/(g) \cong \mathcal{O}_{\mathbf{P}^1_\kappa, x}$.
Since $\mathbf{P}^1_\kappa$ is covered by two affine opens which are the
spectrum of a polynomial ring over $\kappa$, we see that
$\mathcal{O}_{\mathbf{P}^1_\kappa, x}$ is regular by
Algebra, Lemma \ref{algebra-lemma-dim-affine-space}.
We conclude by
Algebra, Lemma \ref{algebra-lemma-regular-mod-x}.
\end{proof}
\begin{lemma}
\label{lemma-blowup-pic}
Let $(A, \mathfrak m, \kappa)$ be a regular local ring of dimension $2$.
Let $f : X \to S = \Spec(A)$ be the blowing up of $A$ in $\mathfrak m$.
Then $\Pic(X) = \mathbf{Z}$ generated by $\mathcal{O}_X(E)$.
\end{lemma}
\begin{proof}
Recall that $E = \mathbf{P}^1_\kappa$ has Picard group $\mathbf{Z}$
with generator $\mathcal{O}(1)$, see
Divisors, Lemma \ref{divisors-lemma-Pic-projective-space-UFD}.
By Lemma \ref{lemma-blowup} the invertible $\mathcal{O}_X$-module
$\mathcal{O}_X(E)$ restricts to $\mathcal{O}(-1)$. Hence
$\mathcal{O}_X(E)$ generates an infinite cyclic group in $\Pic(X)$.
Since $A$ is regular it is a UFD, see More on Algebra,
Lemma \ref{more-algebra-lemma-regular-local-UFD}.
Then the punctured spectrum $U = S \setminus \{\mathfrak m\} = X \setminus E$
has trivial Picard group, see
Divisors, Lemma \ref{divisors-lemma-open-subscheme-UFD}.
Hence for every invertible $\mathcal{O}_X$-module $\mathcal{L}$
there is an isomorphism $s : \mathcal{O}_U \to \mathcal{L}|_U$.
Then $s$ is a regular meromorphic section of $\mathcal{L}$
and we see that $\text{div}_\mathcal{L}(s) = nE$ for some
$n \in \mathbf{Z}$
(Divisors, Definition \ref{divisors-definition-divisor-invertible-sheaf}).
By Divisors, Lemma \ref{divisors-lemma-normal-c1-injective}
(and the fact that $X$ is normal by Lemma \ref{lemma-blowup-regular})
we conclude that $\mathcal{L} = \mathcal{O}_X(nE)$.
\end{proof}
\begin{lemma}
\label{lemma-cohomology-of-blowup}
Let $(A, \mathfrak m, \kappa)$ be a regular local ring of dimension $2$.
Let $f : X \to S = \Spec(A)$ be the blowing up of $A$ in $\mathfrak m$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
\begin{enumerate}
\item $H^p(X, \mathcal{F}) = 0$ for $p \not \in \{0, 1\}$,
\item $H^1(X, \mathcal{O}_X(n)) = 0$ for $n \geq -1$,
\item $H^1(X, \mathcal{F}) = 0$ if $\mathcal{F}$ or $\mathcal{F}(1)$
is globally generated,
\item $H^0(X, \mathcal{O}_X(n)) = \mathfrak m^{\max(0, n)}$,
\item $\text{length}_A H^1(X, \mathcal{O}_X(n)) = -n(-n - 1)/2$
if $n < 0$.
\end{enumerate}
\end{lemma}
\begin{proof}
If $\mathfrak m = (x, y)$, then $X$ is covered by the spectra
of the affine blowup algebras $A[\frac{\mathfrak m}{x}]$ and
$A[\frac{\mathfrak m}{y}]$ because $x$ and $y$ placed in degree $1$
generate the Rees algebra $\bigoplus \mathfrak m^n$ over $A$.
See Divisors, Lemma \ref{divisors-lemma-blowing-up-affine} and
Constructions, Lemma \ref{constructions-lemma-proj-quasi-compact}.
Since $X$ is separated by
Constructions, Lemma \ref{constructions-lemma-proj-separated}
we see that cohomology of quasi-coherent sheaves vanishes in
degrees $\geq 2$ by Cohomology of Schemes, Lemma
\ref{coherent-lemma-vanishing-nr-affines}.
\medskip\noindent
Let $i : E \to X$ be the exceptional divisor, see
Divisors, Definition \ref{divisors-definition-blow-up}.
Recall that $\mathcal{O}_X(-E) = \mathcal{O}_X(1)$ is
$f$-relatively ample, see
Divisors, Lemma \ref{divisors-lemma-blowing-up-gives-effective-Cartier-divisor}.
Hence we know that $H^1(X, \mathcal{O}_X(-nE)) = 0$ for some $n > 0$,
see Cohomology of Schemes, Lemma \ref{coherent-lemma-kill-by-twisting}.
Consider the filtration
$$
\mathcal{O}_X(-nE) \subset \mathcal{O}_X(-(n - 1)E) \subset
\ldots \subset \mathcal{O}_X(-E) \subset \mathcal{O}_X \subset \mathcal{O}_X(E)
$$
The successive quotients are the sheaves
$$
\mathcal{O}_X(-t E)/\mathcal{O}_X(-(t + 1)E) =
\mathcal{O}_X(t)/\mathcal{I}(t) =
i_*\mathcal{O}_E(t)
$$
where $\mathcal{I} = \mathcal{O}_X(-E)$ is the ideal sheaf of $E$.
By Lemma \ref{lemma-blowup} we have $E = \mathbf{P}^1_\kappa$ and
$\mathcal{O}_E(1)$ indeed corresponds to the usual Serre twist of
the structure sheaf on $\mathbf{P}^1$. Hence the cohomology
of $\mathcal{O}_E(t)$ vanishes in degree $1$ for $t \geq -1$, see
Cohomology of Schemes, Lemma
\ref{coherent-lemma-cohomology-projective-space-over-ring}.
Since this is equal to $H^1(X, i_*\mathcal{O}_E(t))$ (by
Cohomology of Schemes, Lemma \ref{coherent-lemma-relative-affine-cohomology})
we find that $H^1(X, \mathcal{O}_X(-(t + 1)E)) \to H^1(X, \mathcal{O}_X(-tE))$
is surjective for $t \geq -1$. Hence
$$
0 = H^1(X, \mathcal{O}_X(-nE))
\longrightarrow
H^1(X, \mathcal{O}_X(-tE)) = H^1(X, \mathcal{O}_X(t))
$$
is surjective for $t \geq -1$ which proves (2).
\medskip\noindent
Let $\mathcal{F}$ be globally generated. This means there exists
a short exact sequence
$$
0 \to \mathcal{G} \to \bigoplus\nolimits_{i \in I} \mathcal{O}_X
\to \mathcal{F} \to 0
$$
Note that $H^1(X, \bigoplus_{i \in I} \mathcal{O}_X) =
\bigoplus_{i \in I} H^1(X, \mathcal{O}_X)$ by
Cohomology, Lemma \ref{cohomology-lemma-quasi-separated-cohomology-colimit}.
By part (2) we have $H^1(X, \mathcal{O}_X) = 0$.
If $\mathcal{F}(1)$ is globally generated, then we can find a
surjection $\bigoplus_{i \in I} \mathcal{O}_X(-1) \to \mathcal{F}$
and argue in a similar fashion.
In other words, part (3) follows from part (2).
\medskip\noindent
For part (4) we note that for all $n$ large enough we have
$\Gamma(X, \mathcal{O}_X(n)) = \mathfrak m^n$, see
Cohomology of Schemes, Lemma \ref{coherent-lemma-recover-tail-graded-module}.
If $n \geq 0$, then we can use the short exact sequence
$$
0 \to \mathcal{O}_X(n) \to \mathcal{O}_X(n - 1) \to
i_*\mathcal{O}_E(n - 1) \to 0
$$
and the vanishing of $H^1$ for the sheaf on the left to get a commutative
diagram
$$
\xymatrix{
0 \ar[r] &
\mathfrak m^{\max(0, n)} \ar[r] \ar[d] &
\mathfrak m^{\max(0, n - 1)} \ar[r] \ar[d] &
\mathfrak m^{\max(0, n)}/\mathfrak m^{\max(0, n - 1)} \ar[r] \ar[d] & 0\\
0 \ar[r] &
\Gamma(X, \mathcal{O}_X(n)) \ar[r] &
\Gamma(X, \mathcal{O}_X(n - 1)) \ar[r] &
\Gamma(E, \mathcal{O}_E(n - 1)) \ar[r] & 0
}
$$
with exact rows. In fact, the rows are exact also for $n < 0$
because in this case the groups on the right are zero.
In the proof of Lemma \ref{lemma-blowup}
we have seen that the right vertical arrow is an isomorphism
(details omitted). Hence if the left vertical arrow is an isomorphism, so
is the middle one. In this way we see that (4) holds by
descending induction on $n$.
\medskip\noindent
Finally, we prove (5) by descending induction on $n$ and the sequences
$$
0 \to \mathcal{O}_X(n) \to \mathcal{O}_X(n - 1) \to
i_*\mathcal{O}_E(n - 1) \to 0
$$
Namely, for $n \geq -1$ we already know $H^1(X, \mathcal{O}_X(n)) = 0$.
Since
$$
H^1(X, i_*\mathcal{O}_E(-2)) =
H^1(E, \mathcal{O}_E(-2)) =
H^1(\mathbf{P}^1_\kappa, \mathcal{O}(-2)) \cong \kappa
$$
by Cohomology of Schemes, Lemma
\ref{coherent-lemma-cohomology-projective-space-over-ring}
which has length $1$ as an $A$-module, we conclude from the long exact
cohomology sequence that (5) holds for $n = -2$. And so on and so forth.
\end{proof}
\begin{lemma}
\label{lemma-blowup-improve}
Let $(A, \mathfrak m)$ be a regular local ring of dimension $2$.
Let $f : X \to S = \Spec(A)$ be the blowing up of $A$ in $\mathfrak m$.
Let $\mathfrak m^n \subset I \subset \mathfrak m$ be an ideal.
Let $d \geq 0$ be the largest integer such that
$$
I \mathcal{O}_X \subset \mathcal{O}_X(-dE)
$$
where $E$ is the exceptional divisor. Set
$\mathcal{I}' = I\mathcal{O}_X(dE) \subset \mathcal{O}_X$.
Then $d > 0$, the sheaf
$\mathcal{O}_X/\mathcal{I}'$ is supported in finitely many
closed points $x_1, \ldots, x_r$ of $X$, and
\begin{align*}
\text{length}_A(A/I)
& >
\text{length}_A \Gamma(X, \mathcal{O}_X/\mathcal{I}') \\
& \geq
\sum\nolimits_{i = 1, \ldots, r}
\text{length}_{\mathcal{O}_{X, x_i}}
(\mathcal{O}_{X, x_i}/\mathcal{I}'_{x_i})
\end{align*}
\end{lemma}
\begin{proof}
Since $I \subset \mathfrak m$ we see that every element of $I$
vanishes on $E$. Thus we see that $d \geq 1$. On the other hand, since
$\mathfrak m^n \subset I$ we see that $d \leq n$. Consider the
short exact sequence
$$
0 \to I\mathcal{O}_X \to \mathcal{O}_X \to \mathcal{O}_X/I\mathcal{O}_X \to 0
$$
Since $I\mathcal{O}_X$ is globally generated, we see that
$H^1(X, I\mathcal{O}_X) = 0$ by Lemma \ref{lemma-cohomology-of-blowup}.
Hence we obtain a surjection
$A/I \to \Gamma(X, \mathcal{O}_X/I\mathcal{O}_X)$. Consider the short exact
sequence
$$
0 \to
\mathcal{O}_X(-dE)/I\mathcal{O}_X \to
\mathcal{O}_X/I\mathcal{O}_X \to
\mathcal{O}_X/\mathcal{O}_X(-dE) \to 0
$$
By Divisors, Lemma \ref{divisors-lemma-codim-1-part}
we see that $\mathcal{O}_X(-dE)/I\mathcal{O}_X$ is supported in finitely many
closed points of $X$. In particular, this coherent sheaf has vanishing higher
cohomology groups (detail omitted). Thus in the following diagram
$$
\xymatrix{
& & A/I \ar[d] \\
0 \ar[r] &
\Gamma(X, \mathcal{O}_X(-dE)/I\mathcal{O}_X) \ar[r] &
\Gamma(X, \mathcal{O}_X/I\mathcal{O}_X) \ar[r] &
\Gamma(X, \mathcal{O}_X/\mathcal{O}_X(-dE)) \ar[r] & 0
}
$$
the bottom row is exact and the vertical arrow surjective. We have
$$
\text{length}_A \Gamma(X, \mathcal{O}_X(-dE)/I\mathcal{O}_X) <
\text{length}_A(A/I)
$$
since $\Gamma(X, \mathcal{O}_X/\mathcal{O}_X(-dE))$ is nonzero.
Namely, the image of $1 \in \Gamma(X, \mathcal{O}_X)$
is nonzero as $d > 0$.
\medskip\noindent
To finish the proof we translate the results above into the statements
of the lemma. Since
$\mathcal{O}_X(dE)$ is invertible we have
$$
\mathcal{O}_X/\mathcal{I}' =
\mathcal{O}_X(-dE)/I\mathcal{O}_X \otimes_{\mathcal{O}_X} \mathcal{O}_X(dE).
$$
Thus $\mathcal{O}_X/\mathcal{I}'$ and $\mathcal{O}_X(-dE)/I\mathcal{O}_X$
are supported in the same set of finitely many
closed points, say $x_1, \ldots, x_r \in E \subset X$.
Moreover we obtain
$$
\Gamma(X, \mathcal{O}_X(-dE)/I\mathcal{O}_X) =
\bigoplus \mathcal{O}_X(-dE)_{x_i}/I\mathcal{O}_{X, x_i}
\cong
\bigoplus \mathcal{O}_{X, x_i}/\mathcal{I}'_{x_i} =
\Gamma(X, \mathcal{O}_X/\mathcal{I}')
$$
because an invertible module over a local ring is trivial.
Thus we obtain the strict inequality. We also get the second because
$$
\text{length}_A(\mathcal{O}_{X, x_i}/\mathcal{I}'_{x_i}) \geq
\text{length}_{\mathcal{O}_{X, x_i}}(\mathcal{O}_{X, x_i}/\mathcal{I}'_{x_i})
$$
as is immediate from the definition of length.
\end{proof}
\begin{lemma}
\label{lemma-differentials-of-blowup}
Let $(A, \mathfrak m, \kappa)$ be a regular local ring of dimension $2$.
Let $f : X \to S = \Spec(A)$ be the blowing up of $A$ in $\mathfrak m$.
Then $\Omega_{X/S} = i_*\Omega_{E/\kappa}$, where $i : E \to X$
is the immersion of the exceptional divisor.
\end{lemma}
\begin{proof}
Writing $\mathbf{P}^1 = \mathbf{P}^1_S$, let
$r : X \to \mathbf{P}^1$ be as in Lemma \ref{lemma-blowup}.
Then we have an exact sequence
$$
\mathcal{C}_{X/\mathbf{P}^1} \to r^*\Omega_{\mathbf{P}^1/S} \to
\Omega_{X/S} \to 0
$$
see Morphisms, Lemma \ref{morphisms-lemma-differentials-relative-immersion}.
Since $\Omega_{\mathbf{P}^1/S}|_E = \Omega_{E/\kappa}$ by
Morphisms, Lemma \ref{morphisms-lemma-base-change-differentials}
it suffices to see that the first arrow defines a surjection
onto the kernel of the canonical map
$r^*\Omega_{\mathbf{P}^1/S} \to i_*\Omega_{E/\kappa}$.
This we can do locally. With notation as in the proof of
Lemma \ref{lemma-blowup} on an affine open of $X$ the morphism $f$
corresponds to the ring map
$$
A \to A[t]/(xt - y)
$$
where $x, y \in \mathfrak m$ are generators. Thus
$\text{d}(xt - y) = x\text{d}t$ and $y\text{d}t = t \cdot x \text{d}t$
which proves what we want.
\end{proof}
\section{Dominating by quadratic transformations}
\label{section-dominating-by-quadratic}
\noindent
Using the result above we can prove that blowups in points dominate
any modification of a regular $2$ dimensional scheme.
\medskip\noindent
Let $X$ be a scheme. Let $x \in X$ be a closed point. As usual, we view
$i : x = \Spec(\kappa(x)) \to X$ as a closed subscheme.
The {\it blowing up $X' \to X$ of $X$ at $x$} is the blowing up of $X$
in the closed subscheme $x \subset X$. Observe that if $X$ is locally
Noetherian, then $X' \to X$ is projective (in particular proper) by
Divisors, Lemma \ref{divisors-lemma-blowing-up-projective}.
\begin{lemma}
\label{lemma-make-ideal-principal}
Let $X$ be a Noetherian scheme. Let $T \subset X$ be a finite set of
closed points $x$ such that $\mathcal{O}_{X, x}$ is
regular of dimension $2$ for $x \in T$.
Let $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent
sheaf of ideals such that $\mathcal{O}_X/\mathcal{I}$ is supported
on $T$.
Then there exists a sequence
$$
X_n \to X_{n - 1} \to \ldots \to X_1 \to X_0 = X
$$
where $X_{i + 1} \to X_i$ is the blowing up of $X_i$ at a closed
point lying above a point of $T$ such that
$\mathcal{I}\mathcal{O}_{X_n}$ is an invertible ideal sheaf.
\end{lemma}
\begin{proof}
Say $T = \{x_1, \ldots, x_r\}$. Denote $I_i$ the stalk of $\mathcal{I}$ at
$x_i$. Set
$$
n_i = \text{length}_{\mathcal{O}_{X, x_i}}(\mathcal{O}_{X, x_i}/I_i)
$$
This is finite as $\mathcal{O}_X/\mathcal{I}$ is supported on $T$
and hence $\mathcal{O}_{X, x_i}/I_i$ has support equal to
$\{\mathfrak m_{x_i}\}$ (see Algebra, Lemma \ref{algebra-lemma-support-point}).
We are going to use induction on $\sum n_i$. If $n_i = 0$ for all
$i$, then $\mathcal{I} = \mathcal{O}_X$ and we are done.
\medskip\noindent
Suppose $n_i > 0$. Let $X' \to X$ be the blowing up of $X$ in $x_i$
(see discussion above the lemma).
Since $\Spec(\mathcal{O}_{X, x_i}) \to X$ is flat we see that
$X' \times_X \Spec(\mathcal{O}_{X, x_i})$ is the blowup of
the ring $\mathcal{O}_{X, x_i}$ in the maximal ideal, see
Divisors, Lemma
\ref{divisors-lemma-flat-base-change-blowing-up}.
Hence the square in the commutative diagram
$$
\xymatrix{
\text{Proj}(\bigoplus\nolimits_{d \geq 0} \mathfrak m_{x_i}^d) \ar[r] \ar[d] &
X' \ar[d] \\
\Spec(\mathcal{O}_{X, x_i}) \ar[r] & X
}
$$
is cartesian. Let $E \subset X'$ and
$E' \subset \text{Proj}(\bigoplus\nolimits_{d \geq 0} \mathfrak m_{x_i}^d)$
be the exceptional divisors. Let $d \geq 1$ be the integer found in
Lemma \ref{lemma-blowup-improve} for the ideal
$\mathcal{I}_i \subset \mathcal{O}_{X, x_i}$.
Since the horizontal arrows in the diagram are flat, since
$E' \to E$ is surjective, and since $E'$ is the pullback of $E$, we see that
$$
\mathcal{I}\mathcal{O}_{X'} \subset \mathcal{O}_{X'}(-dE)
$$
(some details omitted).
Set $\mathcal{I}' = \mathcal{I}\mathcal{O}_{X'}(dE) \subset \mathcal{O}_{X'}$.
Then we see that $\mathcal{O}_{X'}/\mathcal{I}'$ is supported in finitely
many closed points $T' \subset |X'|$ because this holds over
$X \setminus \{x_i\}$ and for the pullback to
$\text{Proj}(\bigoplus\nolimits_{d \geq 0} \mathfrak m_{x_i}^d)$.
The final assertion of Lemma \ref{lemma-blowup-improve}
tells us that the sum of the lengths of the stalks
$\mathcal{O}_{X', x'}/\mathcal{I}'\mathcal{O}_{X', x'}$
for $x'$ lying over $x_i$ is $< n_i$. Hence the sum of the lengths
has decreased.
\medskip\noindent
By induction hypothesis, there exists a sequence
$$
X'_n \to \ldots \to X'_1 \to X'
$$
of blowups at closed points lying over $T'$ such that
$\mathcal{I}'\mathcal{O}_{X'_n}$ is invertible. Since
$\mathcal{I}'\mathcal{O}_{X'}(-dE) = \mathcal{I}\mathcal{O}_{X'}$, we see
that $\mathcal{I}\mathcal{O}_{X'_n} =
\mathcal{I}'\mathcal{O}_{X'_n}(-d(f')^{-1}E)$
where $f' : X'_n \to X'$ is the composition.
Note that $(f')^{-1}E$ is an effective Cartier divisor by
Divisors, Lemma \ref{divisors-lemma-blow-up-pullback-effective-Cartier}.
Thus we are done by
Divisors, Lemma \ref{divisors-lemma-sum-effective-Cartier-divisors}.
\end{proof}
\begin{lemma}
\label{lemma-dominate-by-blowing-up-in-points}
Let $X$ be a Noetherian scheme. Let $T \subset X$ be a finite set of
closed points $x$ such that $\mathcal{O}_{X, x}$ is a regular local
ring of dimension $2$. Let $f : Y \to X$ be a proper morphism of
schemes which is an isomorphism over $U = X \setminus T$.
Then there exists a sequence
$$
X_n \to X_{n - 1} \to \ldots \to X_1 \to X_0 = X
$$
where $X_{i + 1} \to X_i$ is the blowing up of $X_i$ at a closed
point $x_i$ lying above a point of $T$ and a factorization $X_n \to Y \to X$
of the composition.
\end{lemma}
\begin{proof}
By More on Flatness, Lemma \ref{flat-lemma-dominate-modification-by-blowup}
there exists a $U$-admissible blowup $X' \to X$ which dominates
$Y \to X$. Hence we may assume there exists an ideal sheaf
$\mathcal{I} \subset \mathcal{O}_X$ such that
$\mathcal{O}_X/\mathcal{I}$ is supported on $T$ and such that
$Y$ is the blowing up of $X$ in $\mathcal{I}$.
By Lemma \ref{lemma-make-ideal-principal}
there exists a sequence
$$
X_n \to X_{n - 1} \to \ldots \to X_1 \to X_0 = X
$$
where $X_{i + 1} \to X_i$ is the blowing up of $X_i$ at a closed
point $x_i$ lying above a point of $T$ such that
$\mathcal{I}\mathcal{O}_{X_n}$ is an invertible ideal sheaf.
By the universal property of blowing up
(Divisors, Lemma
\ref{divisors-lemma-universal-property-blowing-up})
we find the desired factorization.
\end{proof}
\begin{lemma}
\label{lemma-extend-rational-map-blowing-up}
Let $S$ be a scheme. Let $X$ be a scheme over $S$ which is
regular and has dimension $2$. Let $Y$ be a proper
scheme over $S$. Given an $S$-rational map $f : U \to Y$ from
$X$ to $Y$ there exists a sequence
$$
X_n \to X_{n - 1} \to \ldots \to X_1 \to X_0 = X
$$
and an $S$-morphism $f_n : X_n \to Y$ such that $X_{i + 1} \to X_i$
is the blowing up of $X_i$ at a closed point not lying over $U$
and $f_n$ and $f$ agree.
\end{lemma}
\begin{proof}
We may assume $U$ contains every point of codimension $1$, see
Morphisms, Lemma \ref{morphisms-lemma-extend-across}.
Hence the complement $T \subset X$ of $U$ is a finite set
of closed points whose local rings are regular of dimension $2$.
Applying
Divisors, Lemma \ref{divisors-lemma-extend-rational-map-after-modification}
we find a proper morphism $p : X' \to X$ which is an isomorphism
over $U$ and a morphism $f' : X' \to Y$ agreeing with $f$ over $U$.
Apply Lemma \ref{lemma-dominate-by-blowing-up-in-points}
to the morphism $p : X' \to X$. The composition $X_n \to X' \to Y$ is
the desired morphism.
\end{proof}
\section{Dominating by normalized blowups}
\label{section-normalized-blowups}
\noindent