-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
278 lines (251 loc) · 11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import argparse
import datetime
import os
import shutil
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
import numpy as np
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
import torch.multiprocessing as mp
import tensorboardX
import torch_optimizer as optim
from model import FpNetwork
from datautil.dataset_v2 import SegmentedDataLoader
from datautil.mock_data import MockedDataLoader
import simpleutils
from datautil.specaug import SpecAugment
from torch.cuda.amp import autocast, GradScaler
# fix PyTorch bug #49630
# apply pull request #49631
CosineAnnealingWarmRestarts = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts
def new_cosinedecay_init(self, optimizer, T_0, T_mult=1, eta_min=0, last_epoch=-1, verbose=False):
if T_0 <= 0 or not isinstance(T_0, int):
raise ValueError("Expected positive integer T_0, but got {}".format(T_0))
if T_mult < 1 or not isinstance(T_mult, int):
raise ValueError("Expected integer T_mult >= 1, but got {}".format(T_mult))
self.T_0 = T_0
self.T_i = T_0
self.T_mult = T_mult
self.eta_min = eta_min
self.T_cur = 0 if last_epoch < 0 else last_epoch
super(CosineAnnealingWarmRestarts, self).__init__(optimizer, last_epoch, verbose)
torch.optim.lr_scheduler.CosineAnnealingWarmRestarts.__init__ = new_cosinedecay_init
def similarity_loss(y, tau):
a = torch.matmul(y, y.T)
a /= tau
Ls = []
for i in range(y.shape[0]):
nn_self = torch.cat([a[i,:i], a[i,i+1:]])
softmax = torch.nn.functional.log_softmax(nn_self, dim=0)
Ls.append(softmax[i if i%2 == 0 else i-1])
Ls = torch.stack(Ls)
loss = torch.sum(Ls) / -y.shape[0]
return loss
def train(model, optimizer, train_data, val_data, batch_size, device, params, writer, start_epoch, scaler):
logger = mp.get_logger()
minibatch = 40
if torch.cuda.get_device_properties(0).total_memory > 11e9:
minibatch = 640
total_epoch = params.get('epoch', 100)
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer,
T_0=total_epoch, eta_min=1e-7, last_epoch=start_epoch)
os.makedirs(params['model_dir'], exist_ok=True)
specaug = SpecAugment(params)
for epoch in range(start_epoch+1, total_epoch):
logger.info('epoch %d', epoch+1)
model.train()
tau = params.get('tau', 0.05)
print('epoch %d' % (epoch+1))
losses = []
# set dataloadet to train mode
train_data.shuffle = True
train_data.eval_time_shift = False
train_data.augmented = True
train_data.set_epoch(epoch)
pbar = tqdm(train_data, ncols=80)
for x in pbar:
optimizer.zero_grad()
x = torch.flatten(x, 0, 1)
x = specaug.augment(x)
if minibatch < batch_size:
with torch.no_grad():
xs = torch.split(x, minibatch)
ys = []
for xx in xs:
ys.append(model(xx.to(device)))
# compute gradient of model output
y = torch.cat(ys)
y.requires_grad = True
loss = similarity_loss(y, tau)
loss.backward()
# manual backward
ys = torch.split(y.grad, minibatch)
for xx, yg in zip(xs, ys):
yy = model(xx.to(device))
yy.backward(yg.to(device))
else:
with autocast():
y = model(x.to(device))
loss = similarity_loss(y, tau)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
lossnum = float(loss.item())
pbar.set_description('loss=%f'%lossnum)
losses.append(lossnum)
writer.add_scalar('train/loss', np.mean(losses), epoch)
print('loss: %f' % np.mean(losses))
model.eval()
with torch.no_grad():
print('validating')
x_embed = []
# set dataloader to eval mode
train_data.shuffle = False
train_data.eval_time_shift = True
train_data.augmented = False
for x in tqdm(train_data, desc='train data', ncols=80):
x = x[:, 0]
for xx in torch.split(x, minibatch):
y = model(xx.to(device)).cpu()
x_embed.append(y)
x_embed = torch.cat(x_embed)
train_N = x_embed.shape[0]
acc = 0
validate_N = 0
y_embed = []
for x in tqdm(val_data, desc='val data', ncols=80):
x = torch.flatten(x, 0, 1)
for xx in torch.split(x, minibatch):
y = model(xx.to(device)).cpu()
y_embed.append(y)
y_embed = torch.cat(y_embed)
y_embed_org = y_embed[0::2]
y_embed_aug = y_embed[1::2].to(device)
# compute validation score on GPU
self_score = []
for embeds in torch.split(y_embed_org, 320):
A = torch.matmul(y_embed_aug, embeds.T.to(device))
self_score.append(A.diagonal(-validate_N).cpu())
validate_N += embeds.shape[0]
self_score = torch.cat(self_score).to(device)
ranks = torch.zeros(validate_N, dtype=torch.long).to(device)
for embeds in torch.split(x_embed, 320):
A = torch.matmul(y_embed_aug, embeds.T.to(device))
ranks += (A.T >= self_score).sum(dim=0)
for embeds in torch.split(y_embed_org, 320):
A = torch.matmul(y_embed_aug, embeds.T.to(device))
ranks += (A.T >= self_score).sum(dim=0)
acc = int((ranks == 1).sum())
acc10 = int((ranks <= 10).sum())
acc20 = int((ranks <= 20).sum())
acc100 = int((ranks <= 100).sum())
print('validate score: %f' % (acc / validate_N,))
writer.add_scalar('validation/accuracy', acc / validate_N, epoch)
writer.add_scalar('validation/top10', acc10 / validate_N, epoch)
writer.add_scalar('validation/top20', acc20 / validate_N, epoch)
writer.add_scalar('validation/top100', acc100 / validate_N, epoch)
#writer.add_scalar('validation/MRR', (1/ranks).mean(), epoch)
scheduler.step()
del A, ranks, self_score, y_embed_aug, y_embed_org, y_embed
writer.flush()
# save checkpoint
check = {
'epoch': epoch,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scaler': scaler.state_dict(),
}
torch.save(check, os.path.join(params['model_dir'], 'checkpoint%d.ckpt' % epoch))
# cleanup old checkpoints
if epoch % 10 != 0:
try:
os.unlink(os.path.join(params['model_dir'], 'checkpoint%d.ckpt' % (epoch-10)))
except:
pass
with open(os.path.join(params['model_dir'], 'epochs.txt'), 'w') as fout:
fout.write('%d\n' % epoch)
os.makedirs(params['model_dir'], exist_ok=True)
torch.save(model.state_dict(), os.path.join(params['model_dir'], 'model.pt'))
def test_train(args):
logger = mp.get_logger()
params = simpleutils.read_config(args.params)
torch.manual_seed(123)
torch.cuda.manual_seed(123)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
d = params['model']['d']
h = params['model']['h']
u = params['model']['u']
F_bin = params['n_mels']
segn = int(params['segment_size'] * params['sample_rate'])
T = (segn + params['stft_hop'] - 1) // params['stft_hop']
batch_size = params['batch_size']
device = torch.device('cuda')
model = FpNetwork(d, h, u, F_bin, T, params['model']).to(device)
optimizer = params.get('optimizer', 'adam')
if optimizer == 'lamb':
optimizer = optim.Lamb(model.parameters(), lr=params.get('lr', 1e-4),
weight_decay=1e-6, clamp_value=1e3, debias=True)
else:
optimizer = torch.optim.Adam(model.parameters(), lr=params.get('lr', 1e-4))
scaler = GradScaler()
# load checkpoint
os.makedirs(params['model_dir'], exist_ok=True)
epoch = -1
if os.path.exists(os.path.join(params['model_dir'], 'date.txt')):
with open(os.path.join(params['model_dir'], 'date.txt')) as fin:
date_str = next(fin).strip()
else:
date_str = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
with open(os.path.join(params['model_dir'], 'date.txt'), 'w') as fout:
fout.write(date_str + '\n')
if os.path.exists(os.path.join(params['model_dir'], 'epochs.txt')):
with open(os.path.join(params['model_dir'], 'epochs.txt')) as fin:
epoch = int(fin.read().strip())
if epoch+1 >= params.get('epoch', 100):
print('This model has finished training!')
exit(1)
print('Load from epoch %d' % (epoch+1))
check = torch.load(os.path.join(params['model_dir'], 'checkpoint%d.ckpt' % epoch), map_location='cpu')
model.load_state_dict(check['model'])
optimizer.load_state_dict(check['optimizer'])
if 'scaler' in check:
scaler.load_state_dict(check['scaler'])
torch.cuda.empty_cache()
else:
shutil.copyfile(args.params, os.path.join(params['model_dir'], 'configs.json'))
# tensorboard visualize
safe_name = os.path.split(params['model_dir'])[1]
if safe_name == '':
safe_name = os.path.split(os.path.split(params['model_dir'])[0])[1]
log_dir = "runs/" + safe_name + '-' + date_str
writer = tensorboardX.SummaryWriter(log_dir)
if torch.cuda.is_available():
print('GPU mem usage: %dMB' % (torch.cuda.memory_allocated()/1024**2))
logger.info('load augmentation data')
ADataLoader = SegmentedDataLoader
if args.mock:
ADataLoader = MockedDataLoader
train_data = ADataLoader('train', params, num_workers=args.workers)
print('training data contains %d samples' % len(train_data.dataset))
val_data = ADataLoader('validate', params, num_workers=args.workers)
val_data.shuffle = False
val_data.eval_time_shift = True
print('validation data contains %d samples' % len(val_data.dataset))
train(model, optimizer, train_data, val_data, batch_size, device, params, writer, epoch, scaler)
if __name__ == "__main__":
logger_init = simpleutils.MultiProcessInitLogger('train')
logger_init()
logger = mp.get_logger()
logger.info('logger init')
torch.use_deterministic_algorithms(True)
torch.set_num_threads(2)
mp.set_start_method('spawn')
args = argparse.ArgumentParser()
args.add_argument('-p', '--params', default='configs/default.json')
args.add_argument('-w', '--workers', type=int, default=4)
args.add_argument('--mock', action='store_true')
args = args.parse_args()
logger.info(args)
test_train(args)