-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
154 lines (127 loc) · 4.87 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import json
import os
import shutil
import torch
import yaml
from torchmetrics.detection.mean_ap import MeanAveragePrecision
from torchvision.io import write_png
from tqdm import tqdm
from src.losses import PushPullLoss
from src.dataset import get_dataloaders
from src.models import PostProcess, load_model
from src.train_util import (
coco_to_model_input,
labels_to_classnames,
model_output_to_image,
update_metrics,
)
from src.util import BoxUtil, GeneralLossAccumulator, ProgressFormatter
def get_training_config():
with open("config.yaml", "r") as stream:
data = yaml.safe_load(stream)
return data["training"]
if __name__ == "__main__":
device = "cuda" if torch.cuda.is_available() else "cpu"
metric = MeanAveragePrecision(iou_type="bbox", class_metrics=True).to(device)
scaler = torch.cuda.amp.GradScaler()
general_loss = GeneralLossAccumulator()
progress_summary = ProgressFormatter()
if os.path.exists("debug"):
shutil.rmtree("debug")
training_cfg = get_training_config()
train_dataloader, test_dataloader, scales, labelmap = get_dataloaders()
model = load_model(labelmap, device)
postprocess = PostProcess(
confidence_threshold=training_cfg["confidence_threshold"],
iou_threshold=training_cfg["iou_threshold"],
)
criterion = PushPullLoss(
len(labelmap),
scales=torch.tensor(scales).to(device)
if training_cfg["use_class_weight"]
else None,
)
optimizer = torch.optim.AdamW(
model.parameters(),
lr=float(training_cfg["learning_rate"]),
weight_decay=training_cfg["weight_decay"],
)
model.train()
classMAPs = {v: [] for v in list(labelmap.values())}
for epoch in range(training_cfg["n_epochs"]):
if training_cfg["save_eval_images"]:
os.makedirs(f"debug/{epoch}", exist_ok=True)
# Train loop
losses = []
for i, (image, labels, boxes, metadata) in enumerate(
tqdm(train_dataloader, ncols=60)
# train_dataloader
):
optimizer.zero_grad()
# Prep inputs
image = image.to(device)
labels = labels.to(device)
boxes = coco_to_model_input(boxes, metadata).to(device)
# Predict
all_pred_boxes, pred_classes, pred_sims, _ = model(image)
losses = criterion(pred_sims, labels, all_pred_boxes, boxes)
loss = (
losses["loss_ce"]
+ losses["loss_bg"]
+ losses["loss_bbox"]
+ losses["loss_giou"]
)
loss.backward()
optimizer.step()
general_loss.update(losses)
train_metrics = general_loss.get_values()
general_loss.reset()
# Eval loop
model.eval()
with torch.no_grad():
for i, (image, labels, boxes, metadata) in enumerate(
tqdm(test_dataloader, ncols=60)
):
# Prep inputs
image = image.to(device)
labels = labels.to(device)
boxes = coco_to_model_input(boxes, metadata).to(device)
# Get predictions and save output
pred_boxes, pred_classes, pred_class_sims, _ = model(image)
pred_boxes, pred_classes, scores = postprocess(
pred_boxes, pred_class_sims
)
# Use only the top 200 boxes to stay consistent with benchmarking
top = torch.topk(scores, min(200, scores.size(-1)))
scores = top.values
inds = top.indices.squeeze(0)
update_metrics(
metric,
metadata,
pred_boxes[:, inds],
pred_classes[:, inds],
scores,
boxes,
labels,
)
if training_cfg["save_eval_images"]:
pred_classes_with_names = labels_to_classnames(
pred_classes, labelmap
)
pred_boxes = model_output_to_image(pred_boxes.cpu(), metadata)
image_with_boxes = BoxUtil.draw_box_on_image(
metadata["impath"].pop(),
pred_boxes,
pred_classes_with_names,
)
write_png(image_with_boxes, f"debug/{epoch}/{i}.jpg")
print("Computing metrics...")
val_metrics = metric.compute()
for i, p in enumerate(val_metrics["map_per_class"].tolist()):
label = labelmap[str(i)]
classMAPs[label].append(p)
with open("class_maps.json", "w") as f:
json.dump(classMAPs, f)
metric.reset()
progress_summary.update(epoch, train_metrics, val_metrics)
progress_summary.print()