-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmir.py
135 lines (105 loc) · 5.41 KB
/
mir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import six.moves.urllib as urllib
import sys
import tarfile
import numpy as np
import tensorflow as tf
import cv2
from mir_help import *
from utils import label_map_util
from utils import visualization_utils as vis_util
# Set video capture from 2nd webcam
cap = cv2.VideoCapture(1)
# Record webcam activity
codec = cv2.VideoWriter_fourcc('D','I','V','X')
videoFile = cv2.VideoWriter();
size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
videoFile = cv2.VideoWriter();
videoFile.open('video.avi', codec, 10, size, 1)
sys.path.append("..")
# Model trained with custom data
MODEL_NAME = 'mir_graph'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('training', 'object-detection.pbtxt')
NUM_CLASSES = 23
# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Detection
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
while True:
# Start Camera, while true, camera will run
ret, image_np = cap.read()
# Set height and width of webcam
height = 720
width = 1280
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Detection equivalent to predict, will return confidence scores, classes,
# box dimensions (ymin, xmin, ymax, xmax) & num of detection
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=5)
# Obtain classes and coordinates (xmin) as a list of tuples
od_list = [[category_index.get(value).get('name'), boxes[0][index][1] * width] for index,
value in enumerate(classes[0]) if scores[0, index] > 0.65]
# Reorder the tuples by their xmin coordinates
od_list_seq = sorted(od_list, key=lambda x:(-x[1], x[0]), reverse=True)
# Return only the classes from the tuples
od_list_co = [seq[0] for seq in od_list_seq]
# Convert labels into math operators
od_list_co = convop(od_list_co)
# Combine intergers between operators
co_num_list = combint(od_list_co)
# Convert all numbers into floats if list contains a division
exp_result = chkfl(co_num_list)
# Solve math expression and return result
result = getresult(co_num_list, exp_result)
# Convert math expression and result into a string
if str(result) == '...':
obj = str(exp_result)
else:
obj = str(exp_result) + ' is ' + str(result)
# Set font, print math expression and result
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(image_np, obj, (150, 1000), font, 3, (0, 0, 0), 0, cv2.LINE_AA)
# Record Video
videoFile.write(image_np)
# Set camera resolution and create a break function by pressing 'q'
cv2.imshow('object detection', cv2.resize(image_np, (width, height)))
if cv2.waitKey(25) & 0xFF == ord('q'):
cap.release()
videoFile.release()
cv2.destroyAllWindows()
break