-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.cpp
152 lines (139 loc) · 3.33 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#include "headers/simple_nn.h"
#include "headers/config.h"
using namespace std;
using namespace simple_nn;
using namespace Eigen;
void load_model(const Config& cfg, SimpleNN& model);
int main(int argc, char** argv)
{
Config cfg;
cfg.parse(argc, argv);
cfg.print_config();
int n_train = 60000, n_test = 10000, ch = 1, h = 28, w = 28;
MatXf train_X, test_X;
VecXi train_Y, test_Y;
DataLoader train_loader, test_loader;
if (cfg.mode == "train") {
train_X = read_mnist(cfg.data_dir, "train-images.idx3-ubyte", n_train);
train_Y = read_mnist_label(cfg.data_dir, "train-labels.idx1-ubyte", n_train);
train_loader.load(train_X, train_Y, cfg.batch, ch, h, w, cfg.shuffle_train);
}
test_X = read_mnist(cfg.data_dir, "t10k-images.idx3-ubyte", n_test);
test_Y = read_mnist_label(cfg.data_dir, "t10k-labels.idx1-ubyte", n_test);
test_loader.load(test_X, test_Y, cfg.batch, ch, h, w, cfg.shuffle_test);
cout << "Dataset loaded." << endl;
SimpleNN model;
load_model(cfg, model);
cout << "Model construction completed." << endl;
if (cfg.mode == "train") {
if (cfg.loss == "cross_entropy") {
model.compile({ cfg.batch, ch, h, w }, new SGD(cfg.lr, cfg.decay), new CrossEntropyLoss);
}
else {
model.compile({ cfg.batch, ch, h, w }, new SGD(cfg.lr, cfg.decay), new MSELoss);
}
model.fit(train_loader, cfg.epoch, test_loader);
model.save("./model_zoo", cfg.model + ".pth");
}
else {
model.compile({ cfg.batch, ch, h, w });
model.load(cfg.save_dir, cfg.pretrained);
model.evaluate(test_loader);
}
return 0;
}
void load_model(const Config& cfg, SimpleNN& model)
{
if (cfg.model == "lenet5") {
for (int i = 0; i < 6; i++) {
if (i < 2) {
if (i == 0) {
model.add(new Conv2d(1, 6, 5, 2, cfg.init));
}
else {
model.add(new Conv2d(6, 16, 5, 0, cfg.init));
}
if (cfg.use_batchnorm) {
model.add(new BatchNorm2d);
}
if (cfg.activ == "relu") {
model.add(new ReLU);
}
else {
model.add(new Tanh);
}
if (cfg.pool == "max") {
model.add(new MaxPool2d(2, 2));
}
else {
model.add(new AvgPool2d(2, 2));
}
}
else if (i == 2) {
model.add(new Flatten);
}
else if (i < 5) {
if (i == 3) {
model.add(new Linear(400, 120, cfg.init));
}
else {
model.add(new Linear(120, 84, cfg.init));
}
if (cfg.use_batchnorm) {
model.add(new BatchNorm1d);
}
if (cfg.activ == "relu") {
model.add(new ReLU);
}
else {
model.add(new Tanh);
}
}
else {
model.add(new Linear(84, 10, cfg.init));
if (cfg.use_batchnorm) {
model.add(new BatchNorm1d);
}
if (cfg.loss == "cross_entropy") {
model.add(new Softmax);
}
else {
model.add(new Sigmoid);
}
}
}
}
else {
for (int i = 0; i < 3; i++) {
if (i < 2) {
if (i == 0) {
model.add(new Linear(784, 500, cfg.init));
}
else {
model.add(new Linear(500, 150, cfg.init));
}
if (cfg.use_batchnorm) {
model.add(new BatchNorm1d);
}
if (cfg.activ == "relu") {
model.add(new ReLU);
}
else {
model.add(new Tanh);
}
}
else {
model.add(new Linear(150, 10, cfg.init));
if (cfg.use_batchnorm) {
model.add(new BatchNorm1d);
}
if (cfg.loss == "cross_entropy") {
model.add(new Softmax);
}
else {
model.add(new Sigmoid);
}
}
}
}
}