-
-
Notifications
You must be signed in to change notification settings - Fork 298
/
Copy path576.cpp
88 lines (82 loc) · 3.42 KB
/
576.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
__________________________________________________________________________________________________
sample 4 ms submission
class Solution
{
public:
int findPaths(int m, int n, int N, int i, int j)
{
if (i < 0 || i >= m || j < 0 || j >= n || N < 1) return 0;
long long** numpaths = new long long*[m];
long long** numpathsAux = new long long*[m];
for(int ii = 0; ii < m; ++ii)
{
numpaths[ii] = new long long[n]();
numpathsAux[ii] = new long long[n]();
}
//initialization
long long totalPaths = 0;
if (i == 0) ++totalPaths; else ++numpaths[i-1][j];
if (i == m-1) ++totalPaths; else ++numpaths[i+1][j];
if (j == 0) ++totalPaths; else ++numpaths[i][j-1];
if (j == n-1) ++totalPaths; else ++numpaths[i][j+1];
for(int NN = 2; NN <= N; ++NN)
{
for (int ii = 0; ii < m; ++ii)
{
for (int jj = 0; jj < n; ++jj)
{
if(numpaths[ii][jj] > 0)
{
if (ii == 0) totalPaths += numpaths[ii][jj] % 1000000007; else numpathsAux[ii-1][jj] += numpaths[ii][jj] % 1000000007;
if (ii == m-1) totalPaths += numpaths[ii][jj] % 1000000007; else numpathsAux[ii+1][jj] += numpaths[ii][jj] % 1000000007;
if (jj == 0) totalPaths += numpaths[ii][jj] % 1000000007; else numpathsAux[ii][jj-1] += numpaths[ii][jj] % 1000000007;
if (jj == n-1) totalPaths += numpaths[ii][jj] % 1000000007; else numpathsAux[ii][jj+1] += numpaths[ii][jj] % 1000000007;
totalPaths % 1000000007;
numpaths[ii][jj] = 0;
}
}
}
long long** tmp = numpaths;
numpaths = numpathsAux;
numpathsAux = tmp;
}
return totalPaths % 1000000007;
}
};
__________________________________________________________________________________________________
sample 9576 kb submission
class Solution {
public:
int findPaths(int m, int n, int N, int i, int j) {
// denote dp[i][j][k] := under k steps, at (i, j), how many paths to escape?
// dp[i][j][k] = dp[i - 1][j][k - 1] + dp[i + 1][j][k - 1] + dp[i][j - 1][k - 1] + dp[i][j + 1][k - 1];
for (int k = 0; k < N; k++) {
for (int ii = 0; ii <= m + 1; ii++) {
dp[ii][0][k] = 1;
dp[ii][n + 1][k] = 1;
}
for (int jj = 0; jj <= n + 1; jj++) {
dp[0][jj][k] = 1;
dp[m + 1][jj][k] = 1;
}
}
for (int k = 0; k <= N; k++) {
for (int ii = 1; ii <= m; ii++) {
for (int jj = 1; jj <= n; jj++) {
if (k == 0) {
dp[ii][jj][k] = 0;
} else {
dp[ii][jj][k] = dp[ii - 1][jj][k - 1] + dp[ii + 1][jj][k - 1] +
dp[ii][jj - 1][k - 1] + dp[ii][jj + 1][k - 1];
dp[ii][jj][k] %= 1000000007;
}
}
}
}
cout << dp[i+1][j+1][N] << endl;
return (int)(dp[i + 1][j + 1][N] % 1000000007);
}
private:
unsigned int dp[52][52][51];
};
__________________________________________________________________________________________________