forked from yogi9879/Final
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsub.py
57 lines (39 loc) · 1.46 KB
/
sub.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVR
from sklearn.model_selection import cross_val_score
def Model(dataset):
#dataset =pd.read_csv('train.csv')
del dataset["Alley"]
del dataset["PoolQC"]
del dataset["Fence"]
del dataset["MiscFeature"]
del dataset["FireplaceQu"]
dataset["LotFrontage"].fillna(dataset["LotFrontage"].mode()[0],inplace=True)
dataset["MasVnrType"].fillna(dataset["MasVnrType"].mode()[0],inplace=True)
dataset["MasVnrArea"].fillna(dataset["MasVnrArea"].mean(),inplace=True)
dataset["BsmtQual"].fillna(dataset["BsmtQual"].mode()[0],inplace=True)
dataset["BsmtCond"].fillna(dataset["BsmtCond"].mode()[0],inplace=True)
for i in range(0,76):
if dataset.iloc[:,i].dtype==object:
dataset.iloc[:,i] = dataset.iloc[:,i].astype('category')
dataset.iloc[:,i]=dataset.iloc[:,i].cat.codes
dataset=dataset.dropna()
train_y=dataset.iloc[:,-1]
# Feature Scaling
sc_X = StandardScaler()
sc_y = StandardScaler()
#test = sc_X.fit_transform(test)
dataset = sc_y.fit_transform(dataset)
dataset=pd.DataFrame(dataset)
correlation=dataset.corr(method="pearson")
correlation.iloc[:,1]
train_x=dataset.iloc[:,0:75]
svr_reg=SVR(kernel = 'rbf')
svr_reg.fit(train_x,train_y)
accuracies_train = cross_val_score(estimator =svr_reg , X = train_x, y = train_y, cv = 10)
a=svr_reg.score(train_x,train_y)
#y_lpredict=svr_reg.predict(test)
return a