-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmodel.py
246 lines (204 loc) · 7.84 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import argparse
import cv2
import json
import numpy as np
import os
import pandas as pd
import scipy.misc
import shutil
import time
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.optim as optim
import torchvision
import torchvision.models as models
import utils
from PIL import Image
from averagemeter import *
from models import *
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle
from torch.autograd import Variable
from torch.utils.data import sampler
from torchvision import datasets
from torchvision import transforms
# GLOBAL CONSTANTS
INPUT_SIZE = 224
NUM_CLASSES = 185
NUM_EPOCHS = 35
LEARNING_RATE = 1e-1
USE_CUDA = torch.cuda.is_available()
best_prec1 = 0
classes = []
# ARGS Parser
parser = argparse.ArgumentParser(description='PyTorch LeafSnap Training')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
args = parser.parse_args()
# Training method which trains model for 1 epoch
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
if USE_CUDA:
input = input.cuda(async=True)
target = target.cuda(async=True)
data_time.update(time.time() - end)
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data[0], input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 100 == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'\Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
# Validation method
def validate(val_loader, model, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
class_correct = list(0. for i in range(185))
class_total = list(0. for i in range(185))
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
if USE_CUDA:
input = input.cuda(async=True)
target = target.cuda(async=True)
input_var = torch.autograd.Variable(input, volatile=True)
target_var = torch.autograd.Variable(target, volatile=True)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data[0], input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 10 == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
print('\n[INFO] Saved Model to model_best.pth.tar')
shutil.copyfile(filename, 'model_best.pth.tar')
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = LEARNING_RATE * (0.1 ** (epoch // 6))
if (lr <= 0.0001):
lr = 0.0001
print('\n[Learning Rate] {:0.6f}'.format(lr))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
print('\n[INFO] Creating Model')
model = models.resnet101(pretrained=False)
model.fc = nn.Linear(2048, 185)
# model = VGG('VGG16')
# model = resnet101()
# model = densenet121()
print('\n[INFO] Model Architecture: \n{}'.format(model))
criterion = nn.CrossEntropyLoss()
if USE_CUDA:
model = torch.nn.DataParallel(model).cuda()
criterion = criterion.cuda()
optimizer = optim.SGD(model.parameters(), lr=LEARNING_RATE,
momentum=0.9, weight_decay=1e-4, nesterov=True)
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
print('\n[INFO] Reading Training and Testing Dataset')
traindir = os.path.join('dataset', 'train')
testdir = os.path.join('dataset', 'test')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
data_train = datasets.ImageFolder(traindir, transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize]))
data_test = datasets.ImageFolder(testdir, transforms.Compose([
transforms.ToTensor(),
normalize]))
classes = data_train.classes
train_loader = torch.utils.data.DataLoader(data_train, batch_size=64, shuffle=True, num_workers=2)
val_loader = torch.utils.data.DataLoader(data_test, batch_size=64, shuffle=False, num_workers=2)
print('\n[INFO] Training Started')
for epoch in range(1, NUM_EPOCHS + 1):
adjust_learning_rate(optimizer, epoch)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch)
# evaluate on validation set
prec1 = validate(val_loader, model, criterion)
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict(),
}, is_best)
print('\n[INFO] Saved Model to leafsnap_model.pth')
torch.save(model, 'leafsnap_model.pth')
print('\n[DONE]')