Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

The result is not match with your given npz file #5

Open
lmolhw5252 opened this issue Sep 12, 2021 · 4 comments
Open

The result is not match with your given npz file #5

lmolhw5252 opened this issue Sep 12, 2021 · 4 comments
Labels
comeback to it this weekend Will comeback to this issue this weekend

Comments

@lmolhw5252
Copy link

Hi,I use your given pth file and your yaml
I use test_depth.py file,
ckpt/s2d3d_depth_HOHO_depth_dct_efficienthc_TransEn1/ep60.pth
config/s2d3d_depth/HOHO_depth_dct_efficienthc_TransEn1.yaml
{'mre': array(0.10142188), 'mae': array(0.2026864), 'rmse': array(0.38335027), 'rmse_log': array(0.06684125), 'log10': array(0.04376619), 'delta_1': array(0.90537266), 'delta_2': array(0.96934565), 'delta_3': array(0.98862388)}

mre 163.6033
mae 1.8321
rmse 2.0242
rmse_log 2.1812
log10 2.1632
delta_1 0.0001
delta_2 0.0002
delta_3 0.0005

@sunset1995
Copy link
Owner

It seem that the data is different from ours.
Let use camera_e7c078fec2414967b99f65c847b9d38a_office_11_frame_equirectangular_domain_ in area_5a to check the consistency.
For the target depth map:

from imageio import imread
depth = imread('data/stanford2D3D/area_5a/depth/camera_e7c078fec2414967b99f65c847b9d38a_office_11_frame_equirectangular_domain_depth.png')
print(depth.min(), d.max(), d[d!=65535].max())

It output 356 65535 3156

For the input rgb:

from imageio import imread
rgb = imread('data/stanford2D3D/area_5a/rgb/camera_e7c078fec2414967b99f65c847b9d38a_office_11_frame_equirectangular_domain_rgb.png')
print((rgb==0).all(-1).mean())

It output 0.2767658233642578.

@lmolhw5252
Copy link
Author

lmolhw5252 commented Sep 13, 2021

Hi thanks for reply, there is my result:

>>> from imageio import imread
>>> depth = imread('/data1/lhw/workspace/HoHoNet/data/stanford2D3D/area_5a/depth/camera_e7c078fec2414967b99f65c847b9d38a_office_11_frame_equirectangular_domain_depth.png')
>>> print(depth.min(), depth.max(), depth[depth!=65535].max())
0 65535 65534
>>> rgb = imread('/data1/lhw/workspace/HoHoNet/data/stanford2D3D/area_5a/rgb/camera_e7c078fec2414967b99f65c847b9d38a_office_11_frame_equirectangular_domain_rgb.png')
>>> print((rgb==0).all(-1).mean())
0.0

Different from your result, can you upload your datasets just for depth train and valid? Thanks very much! Have a good day.

@sunset1995
Copy link
Owner

I think I don't have the right to distribute Stanford2d3d dataset.
I download the data from the official site here (http://buildingparser.stanford.edu/dataset.html).

The official RGBs show black in the north-/south-pole region.
But from your

>>> print((rgb==0).all(-1).mean())
0.0

It seem that you use the restiched one?

@lmolhw5252
Copy link
Author

lmolhw5252 commented Sep 13, 2021

您好,非常感谢您的解答,但是我还是有一些问题我按照您的https://github.com/sunset1995/HoHoNet/blob/master/README_prepare_data_s2d3d.md
准备的方法,生成对应的文件。

from imageio import imread

rgb = imread('/home/lmolhw/workspace/HoHoNet/Data_test/Stanford/area_5a/rgb/camera_e7c078fec2414967b99f65c847b9d38a_office_11_frame_equirectangular_domain_rgb.png')
print((rgb==0).all(-1).mean())

depth = imread('/home/lmolhw/workspace/HoHoNet/Data_test/Stanford/area_5a/depth/camera_e7c078fec2414967b99f65c847b9d38a_office_11_frame_equirectangular_domain_depth.png')
print(depth.min(), depth.max(), depth[depth!=65535].max())
0.25
0 65535 65534

另外还有几个问题:

  • 这个数据的prepare对模型的训练结果会有影响么?
  • 每个模型大概训练了多少个epoch呢?
  • 在test时,(BiFuse's stitching and setting)是什么?
  • 训练集和测试集是如何选择的呢?我看原文里面写的是:5用作测试,其余用作训练?
  • 或者如果方便,可否提供百度网盘关于depth的训练、测试数据下载~我将非常感激!
    期待您的回复~祝好~

@sunset1995 sunset1995 added the comeback to it this weekend Will comeback to this issue this weekend label Sep 14, 2021
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
comeback to it this weekend Will comeback to this issue this weekend
Projects
None yet
Development

No branches or pull requests

2 participants