forked from DrRoad/weather_analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
abiotic_regressors.r
133 lines (107 loc) · 5.15 KB
/
abiotic_regressors.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# This script takes the old daily weather data (Daily_weather_1980_89.csv) and combines it with the
# newer weather station data (Hourly_PPT_mm_1989_present_fixed.csv) and creates a suite of regressor
# variables
# Written by EMC 3/2/15
#
# Input file:
# Daily_weather_1980_present_fixed_patched.csv
# Year, Month, Day, Precipitation, TempAirMax, TempAirMin, patch
# this data is created (updated) by the script weather_daily_summary.r
# fixed means I adjusted for the 1997 weather station hiccup
# patched means I used Portal4sw and SanSimon data to estimate the holes in the Portal weather station data
#
# Output file:
# all_abiotic_vars.csv
# year, month, yrmo, sumprecip, maxtemp, mintemp, wet_frac, wet, dry, freeze, sumprecip3, wetfrac3, freeze3,
# sumprecip6, wetfrac6, freeze6, sumprecip12, wetfrac12, freeze12
# wet_frac = fraction of days in month with rain
# freeze = number of days in month where temp got below 0
# sumprecip3 = sum of precip in past 3 months (6 months, 12 months)
# ===============================================================================================
# functions
monthly_summary_from_daily = function(dataframe) {
#takes hourly daily from portal and produces monthly total/avg
sumprecip = aggregate(dataframe$Precipitation,by=list(dataframe$Month,dataframe$Year),FUN=sum)
maxtemp = aggregate(dataframe$TempAirMax,by=list(dataframe$Month,dataframe$Year),FUN=max)
mintemp = aggregate(dataframe$TempAirMin,by=list(dataframe$Month,dataframe$Year),FUN=min)
month = sumprecip$Group.1
year = sumprecip$Group.2
sumprecip = sumprecip$x
maxtemp = maxtemp$x
mintemp = mintemp$x
return(data.frame(year,month,sumprecip,maxtemp,mintemp))
}
wet_days = function(daily) {
# returns fraction of days with rain in a month
wet = daily[daily$Precipitation!=0,]
wet = wet[!is.na(wet$Month),]
nwet = aggregate(wet$Month,by=list(wet$Month,wet$Year),FUN=length)
dry = daily[daily$Precipitation==0,]
dry = dry[!is.na(dry$Month),]
ndry = aggregate(dry$Month,by=list(dry$Month,dry$Year),FUN=length)
wetdry = merge(nwet,ndry,by=c('Group.1','Group.2'),all=T)
wetdry$x.x[is.na(wetdry$x.x)] = 0
wetdry$x.y[is.na(wetdry$x.y)] = 0
month = wetdry$Group.1
year = wetdry$Group.2
wet_frac = wetdry$x.x/(wetdry$x.x+wetdry$x.y)
return(data.frame(yrmo = paste(year,month),wet_frac,wet=wetdry$x.x,dry=wetdry$x.y))
}
freeze_days = function(daily) {
# returns number of days below freezing
freeze = daily[daily$TempAirMin<0,]
freeze = freeze[!is.na(freeze$Month),]
nfreeze = aggregate(freeze$Month,by=list(freeze$Month,freeze$Year),FUN=length)
names(nfreeze) = c('month','year','freeze')
return(nfreeze)
}
# ================================================================================================
# read in data
daily = read.csv('data/Daily_weather_1980_present_fixed_patched.csv')
# =================================================================================================
# aggregate into monthly summary
monthly = monthly_summary_from_daily(daily)
monthly$yrmo = paste(monthly$year,monthly$month)
wet_frac = wet_days(daily)
monthly = merge(monthly,wet_frac,by=c('yrmo'),all=T)
monthly = monthly[order(monthly$year,monthly$month),]
monthly$wet_frac[is.na(monthly$sumprecip)] = NA # make sure where precip is NA, wet/dry fraction is also NA
monthly$wet[is.na(monthly$sumprecip)] = NA
monthly$dry[is.na(monthly$sumprecip)] = NA
freeze = freeze_days(daily)
monthly = merge(monthly,freeze,by=c('year','month'),all=T)
monthly$freeze[is.na(monthly$freeze)] = 0
monthly$freeze[is.na(monthly$maxtemp)] = NA
# ================================================================================================
# aggregate into 3-month chunks
monthly$sumprecip3 = rep(NA)
monthly$wetfrac3 = rep(NA)
monthly$freeze3 = rep(NA)
for (n in 3:length(monthly$yrmo)) {
monthly$sumprecip3[n] = sum(monthly$sumprecip[(n-2):n])
monthly$wetfrac3[n] = sum(monthly$wet[(n-2):n])/(sum(monthly$wet[(n-2):n])+sum(monthly$dry[(n-2):n]))
monthly$freeze3[n] = sum(monthly$freeze[(n-2):n])
}
# ==================================================================================================
# aggregate into 6-month chunks
monthly$sumprecip6 = rep(NA)
monthly$wetfrac6 = rep(NA)
monthly$freeze6 = rep(NA)
for (n in 6:length(monthly$yrmo)) {
monthly$sumprecip6[n] = sum(monthly$sumprecip[(n-5):n])
monthly$wetfrac6[n] = sum(monthly$wet[(n-5):n])/(sum(monthly$wet[(n-5):n])+sum(monthly$dry[(n-5):n]))
monthly$freeze6[n] = sum(monthly$freeze[(n-5):n])
}
# ==================================================================================================
# 1 year
monthly$sumprecip12 = rep(NA)
monthly$wetfrac12 = rep(NA)
monthly$freeze12 = rep(NA)
for (n in 12:length(monthly$yrmo)) {
monthly$sumprecip12[n] = sum(monthly$sumprecip[(n-11):n])
monthly$wetfrac12[n] = sum(monthly$wet[(n-11):n])/(sum(monthly$wet[(n-11):n])+sum(monthly$dry[(n-11):n]))
monthly$freeze12[n] = sum(monthly$freeze[(n-11):n])
}
# =================================================================================================
# write to csv
write.csv(monthly,file='data/all_abiotic_vars.csv',row.names=F)