-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathKDTree.sc
502 lines (429 loc) · 16.5 KB
/
KDTree.sc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
/*
kd-tree implementation for SuperCollider, by Dan Stowell (c) 2007
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
*/
KDTree {
var <depth, <axis,
// "location" is array representing the k-dimensional position found at the median
<location,
// "label" optional, can be anything
<label,
// flag allows for elements to be deleted
<>notDeleted=true,
// automatically allocated, used mainly for testing equality. root is binary 1; root.leftChild binary 10; root.rightChild binary 11; etc
<uniqueid,
<leftChild, <rightChild, <parent;
*new { |array, depth=0, parent, lastIsLabel = false, uniqueid=1|
^super.new.init(array, depth, parent, lastIsLabel, uniqueid)
}
init { |array, dep=0, par, lastIsLabel=false, uid=1|
var sorted, medianPos;
depth = dep;
parent = par;
uniqueid = uid;
axis = depth % (array[0].size - if(lastIsLabel, 1, 0));
// We want to find the median index, but if even-sized data we want to
// make sure we find a point, so we don't use the average-of-two-centre-points that .median uses
medianPos = array.size >> 1;
sorted = array.copy;
sorted.hoareFind(medianPos, { |a,b| a[axis] < b[axis] });
location = sorted[medianPos];
if(lastIsLabel, { label = location.pop });
leftChild = if(medianPos==0 , nil, { KDTree.new(sorted[..medianPos-1], depth+1, this, lastIsLabel, uniqueid << 1) });
rightChild = if(medianPos==(array.size-1), nil, { KDTree.new(sorted[medianPos+1..], depth+1, this, lastIsLabel, uniqueid << 1 | 1)});
}
nearest { |point, nearestSoFar, bestDist=inf, incExact=true|
^this.kNearest(point, 1, nearestSoFar, bestDist, incExact)
}
kNearest { |point, k, nearestSoFar, bestDist=inf, incExact=true|
var quickGuess, searchParent, quickGuessDistSq, max, min, sibling;
// Descend to the leaf that would be parent of the point if it was in the data.
// Actually, because the partition may leave exact matches on either side of the partition, we use a modified descent.
quickGuess = this.pr_QuickDescend(point, incExact);
quickGuessDistSq = if(quickGuess.notDeleted, {
(quickGuess.location - point).sum{|x| x * x}
}, {
inf
});
if(incExact.not and:{quickGuessDistSq==0}){
quickGuessDistSq = inf; // Needs to be done after the distance calc, NOT with equality test
};
// externally-supplied guess may be better - let's check
# nearestSoFar, bestDist = this.pr_updateNearestSq(quickGuess, quickGuessDistSq, nearestSoFar, bestDist, incExact);
// Next we ascend back up from the QUICK GUESS (NOT from the best so far), examining other branches only if the cut-line makes it possible
// for a point to be closer than the nearest-so-far.
^quickGuess.pr_nearest_ascend(point, nearestSoFar, bestDist, this.depth, incExact)
}
// Checks to see if the "item" at distance "dist" is better than the bestItem at bestDist, and returns the winner.
// This is intended in future to use a *list* of bestItems, to enable kNN.
// Returns [newBestItem, newBestDist]
pr_updateNearest { |item, dist, bestItem, bestDist, incExact=true|
^if((incExact or: {dist != 0}) and: {dist < bestDist}){
[item, dist]
}{
[bestItem, bestDist]
}
}
// often efficient to avoid calculating the sqrt
pr_updateNearestSq { |item, distSq, bestItem, bestDist, incExact=true|
^if((incExact or: {distSq != 0}) and: {distSq < (bestDist*bestDist)}){
[item, distSq.sqrt]
}{
[bestItem, bestDist]
}
}
pr_BestLeafFor{ |point|
// Finds the leaf closest to a certain point, not in Euclidean terms but in terms of the space slicing. Used by add.
var chosen;
if(this.isLeaf, { ^this });
chosen = if((point[axis] <= location[axis]) and:{leftChild.notNil}, {leftChild}, {rightChild});
^if(chosen.isNil, {
this
}, {
chosen.pr_BestLeafFor(point);
});
}
pr_QuickDescend{ |point, incExact=true|
// Finds a quick first guess as to the nearest item. Used by NN search.
var l, r;
if(this.isLeaf or:{incExact and:{this.location==point}}, { ^this });
if(point[axis] == location[axis] and:{leftChild.notNil and: {rightChild.notNil}}){
// We don't know which side to look down (partitioning could have put points on either side), so we must examine both.
l = leftChild.pr_QuickDescend(point);
r = rightChild.pr_QuickDescend(point);
^if(((l.location-point).sum{|x| x * x}) < ((r.location-point).sum{|x| x * x})){
l
}{
r
};
};
// We know there is exactly one leaf to investigate
^if(leftChild.isNil, {
rightChild
},{
if(rightChild.isNil or:{point[axis] <= location[axis]}){
leftChild
}{
rightChild
};
}).pr_QuickDescend(point, incExact);
}
// Recursive, and called by pr_nearest_ascend.
pr_nearest_descend {|point, nearestSoFar, dist, incExact=true|
var curDistSq, sepFromSplit;
// Check self location, NB leave it squared
curDistSq = (location - point).sum{|x| x * x};
# nearestSoFar, dist = this.pr_updateNearestSq(this, curDistSq, nearestSoFar, dist, incExact);
// Descend into children only if logically necessary.
sepFromSplit = point[axis] - location[axis]; // May be pos or neg
if(leftChild.notNil and:{sepFromSplit < dist}){
# nearestSoFar, dist = leftChild.pr_nearest_descend(point, nearestSoFar, dist, incExact);
};
if(rightChild.notNil and:{sepFromSplit > (0 - dist)}){
# nearestSoFar, dist = rightChild.pr_nearest_descend(point, nearestSoFar, dist, incExact);
};
^[nearestSoFar, dist];
}
// Private recursive method.
// Will first be called on the query node itself; eventually will be called on the root.
// What this does is assumes that we've searched inside the current node and its subtree,
// and it checks the parent to see if the sibling should be searched.
pr_nearest_ascend { |point, nearestSoFar, bestDist, stopAtDepth=0, incExact=true|
var cur, curDist, sepFromSplit;
if(this.depth <= stopAtDepth){
// collapse out of the recursion
^[nearestSoFar, bestDist]
};
// Only if the perp distance from the query point to the division plane
// is nearer than the best dist so far, is it logically possible for a nearer
// one to be in the parent's location or the sibling
sepFromSplit = point[parent.axis] - parent.location[parent.axis]; // May be pos or neg
if(this.isRightChild){
if(sepFromSplit < bestDist){
curDist=(parent.location - point).sum{|x| x * x};
# nearestSoFar, bestDist = this.pr_updateNearestSq(parent, curDist, nearestSoFar, bestDist, incExact);
if(parent.leftChild.notNil){
// Using .pr_nearest_descend rather than a full .nearest is generally faster
# cur, curDist = parent.leftChild.pr_nearest_descend(point, nearestSoFar, bestDist, incExact);
# nearestSoFar, bestDist = this.pr_updateNearest(cur, curDist, nearestSoFar, bestDist, incExact);
};
};
}{ // is left child:
if((0 - sepFromSplit) < bestDist){
curDist=(parent.location - point).sum{|x| x * x};
# nearestSoFar, bestDist = this.pr_updateNearestSq(parent, curDist, nearestSoFar, bestDist, incExact);
if(parent.rightChild.notNil){
// Using .pr_nearest_descend rather than a full .nearest is generally faster
# cur, curDist = parent.rightChild.pr_nearest_descend(point, nearestSoFar, bestDist, incExact);
# nearestSoFar, bestDist = this.pr_updateNearest(cur, curDist, nearestSoFar, bestDist, incExact);
};
};
};
// OK, so we've checked our sibling and parent, pass on up to the parent to do the same
^parent.pr_nearest_ascend(point, nearestSoFar, bestDist, stopAtDepth, incExact);
}
// Compared against .nearest, this should be faster due to knowledge about where the query node is in the tree.
// Users aren't expected to supply bestSoFar, bestDist values - they're used internally
// (They're fed in when the allNearest algorithm runs, making use of this method)
nearestToNode { |nearestSoFar, bestDist=inf, incExact=true|
^this.kNearestToNode(1, nearestSoFar, bestDist, incExact)
}
kNearestToNode { |k, nearestSoFar, bestDist=inf, incExact=true|
var curr, curDist;
if(leftChild.notNil, {
# curr, curDist = leftChild.kNearest(location, k, nearestSoFar, bestDist, incExact);
# nearestSoFar, bestDist = this.pr_updateNearest(curr, curDist, nearestSoFar, bestDist, incExact);
});
if(rightChild.notNil, {
# curr, curDist = rightChild.kNearest(location, k, nearestSoFar, bestDist, incExact);
# nearestSoFar, bestDist = this.pr_updateNearest(curr, curDist, nearestSoFar, bestDist, incExact);
});
// Now ascend up the tree, checking if we need to search the sibling subtrees.
^this.pr_nearest_ascend(location, nearestSoFar, bestDist, 0, incExact)
}
// You can speed this up by passing a bestDist value beyond which you don't want to search,
// which may skip some values by accident and make the search slightly approximate
allNearest { |bestDist=inf, incExact=true|
// My optimised methods are not faster :( ):
// I wonder if there are methods that are genuinely typically faster than:
^this.collect({|n| n -> n.nearestToNode(nil, bestDist, incExact)});
}
sibling {
if(parent.isNil, {^nil});
// May be nil, even if parent exists
^if(this.isLeftChild, { parent.rightChild }, { parent.leftChild });
}
find { |point, incDeleted = false|
var ret = nil;
if((notDeleted or:{incDeleted}) and:{location == point}, {
^this
}, {
if(point[axis] <= location[axis], {
leftChild !? {
ret = leftChild.find(point, incDeleted);
ret !? { ^ret };
};
});
if(point[axis] >= location[axis], {
rightChild !? {
ret = rightChild.find(point, incDeleted);
ret !? { ^ret };
};
});
^nil
});
}
add { |point, label|
var addTo;
addTo = this.pr_BestLeafFor(point).pr_add(point, label);
}
pr_add{ |point, label|
if(point[axis] < location[axis], {
leftChild = KDTree([point ++ label], depth+1, this, label.notNil, uniqueid << 1);
}, {
rightChild = KDTree([point ++ label], depth+1, this, label.notNil, uniqueid << 1 | 1);
});
}
delete { |point|
var res;
res = this.find(point);
if(res.notNil, {"deleted".postln; res.notDeleted = false});
}
undelete { |point|
var res;
res = this.find(point, true);
if(res.notNil, {"undeleted".postln; res.notDeleted = true});
}
recreate {
^this.class.new(this.asArray(true), lastIsLabel: true);
}
// Search within a rectangle (hyperrectangle) area
rectSearch { | lo, hi |
var points = Array.new;
if(leftChild.notNil and:{location[axis] >= lo[axis]}){
points = points ++ leftChild.rectSearch(lo, hi);
};
if(rightChild.notNil and:{location[axis] <= hi[axis]}){
points = points ++ rightChild.rectSearch(lo, hi);
};
if(notDeleted
and: {(location >= lo).indexOf(false).isNil}
and: {(location <= hi).indexOf(false).isNil}){
points = points ++ this;
};
^points;
}
// Search within a spherical area.
// Currently fairly lazy, using rectSearch and then pruning the results.
// There may be fancier ways to do this.
radiusSearch { |point, radius=1|
var results, rsq;
results = this.rectSearch(point - radius, point + radius);
rsq = radius * radius;
results = results.select({|res| (res.location-point).sum{|x| x * x} <= rsq });
^results;
}
min {
var min = location;
leftChild !? { if(leftChild.notDeleted , { min = min(min, leftChild.min )}) };
rightChild !? { if(rightChild.notDeleted, { min = min(min, rightChild.min)}) };
^min;
}
max {
var max = location;
leftChild !? { if(leftChild.notDeleted , { max = max(max, leftChild.max )}) };
rightChild !? { if(rightChild.notDeleted, { max = max(max, rightChild.max)}) };
^max;
}
do { |func, incDeleted=false|
leftChild !? { leftChild.do(func, incDeleted) };
rightChild !? { rightChild.do(func, incDeleted) };
// DEPTH-FIRST iteration - important for .allNearest
if(notDeleted or:{incDeleted}, {
func.value(this);
});
}
// Users should not supply arraySoFar
collect { |func, incDeleted=false, arraySoFar|
if(arraySoFar.isNil, {arraySoFar = Array.new(this.size)});
leftChild !? { leftChild.collect(func, incDeleted, arraySoFar) };
rightChild !? { rightChild.collect(func, incDeleted, arraySoFar) };
if(notDeleted or:{incDeleted}, {
arraySoFar = arraySoFar.add(func.value(this));
});
^arraySoFar
}
// Users should not supply an argument "arr".
// For efficiency this is used to initialise an array of the appropriate size and pass that around the tree.
asArray { |incLabels=false, arr|
arr = arr ?? Array.new(this.size);
if(notDeleted, {arr = arr.add(if(incLabels, {location ++ [label]}, {location});)});
if(leftChild.notNil, { arr = leftChild.asArray( incLabels, arr) });
if(rightChild.notNil, { arr = rightChild.asArray(incLabels, arr) });
^arr;
}
dumpTree { |maxDepth=inf|
(" ".dup(depth).flat.as(String) ++ if(depth!=0, {if(this.isLeftChild, {"l"}, {"r"})}, {""}) ++ location
+ " (id" + uniqueid++"):" + label
+ if(notDeleted.not, {"---DELETED"}, {""})).postln; if(depth < maxDepth){
leftChild !? {leftChild.dumpTree(maxDepth)};
rightChild !? {rightChild.dumpTree(maxDepth)};
};
}
isRoot {
// ^parent.isNil
^uniqueid==1 //faster
}
isLeftChild {
// ^parent.leftChild==this
^ (uniqueid != 1) and:{uniqueid & 1 == 0} //faster
}
isRightChild {
// ^parent.rightChild==this
^ (uniqueid != 1) and:{uniqueid & 1 == 1} //faster
}
isLeaf {
^leftChild.isNil and: {rightChild.isNil}
}
size { |incDeleted = false|
^ if(notDeleted or:{incDeleted}, 1, 0)
+ if(leftChild.isNil , 0, {leftChild.size })
+ if(rightChild.isNil, 0, {rightChild.size});
}
highestUniqueId {
var val;
val = uniqueid;
leftChild !? { val = max(val, leftChild.highestUniqueId)};
rightChild !? { val = max(val, rightChild.highestUniqueId)};
^val;
}
== { |that|
^
// Within tree, uniqueid is sufficient.
(this.uniqueid == that.uniqueid)
// Between trees, we're not sure so we should check other things
// Note: put the easiest checks first! boolean, integer - push location and label checks later
and:{this.notDeleted == that.notDeleted}
and:{this.depth == that.depth}
and:{this.location == that.location}
and:{this.label == that.label}
}
// Entropy estimate of distribution via nearest-neighbour distances.
// See Beirlant et al (1997), "Nonparametric entropy estimation: An overview", sec 2.4
entropyNN { |tooclose = 0.0000001|
var n, nats;
n = this.size.asFloat;
// for each entry, res.value[1] is the NN distance
// THIS IS FROM BEIRLANT:
/*
nats = this.allNearest.sumF{|res| if(res.value[1]==0, 0, {log(n * res.value[1])})
+ 1.2703628454615 // == log(2) + the Euler constant
*/
// This is Kybic's "robustified" version (ICASSP 2006)
nats = 0 - this.allNearest.sumF{|res| log(n * res.value[1])}
/ n
+ 1.2703628454615 // == log(2) + the Euler constant
^ nats * 1.442695040889 // convert to bits, multiply by 1/log(2)
}
// Entropy estimate of distribution via nearest-neighbour distances, in BITS by default.
// See J.ÊVictor. Binless strategies for estimation of information from neural data. Physical Review E, 66(5):51903, 2002.
/*
entropyNN { |units=\bits|
var n, val, r, sa, constant;
r = this.location.size; // num dims
n = this.size.asFloat; // num data
// Area of a unit hypersphere in this space - see http://mathworld.wolfram.com/Hypersphere.html
sa = if(r.odd){
(2**((r+1)/2) * pi**((r+1)/2))
/
(r-2, r-4 .. 1).product // Double factorial
}{
(2 * (pi**(r/2)))
/
if(r==2){1}{(((r/2)-1) .. 1).product} // factorial
};
// To each element we must add...
constant = log2(sa * (n - 1.0) / r)
+ (0.57721566490153 / log(2)); // 0.57721566490153 == Euler-Mascheroni constant
"entropyNN: % dims, % points, spherearea=%, constant=%".format(r, n, sa, constant).postln;
// for each entry, res.value[1] is the NN distance
val = (r/n) * this.allNearest.sumF{|res|
if(res.value[1]==0, 0, {log2(res.value[1])})
+
constant
};
^units.switch(
\nats,
{ val * 0.69314718055995 }, // Convert to nats, multiply by log(2)
// bits is default:
val
);
// ^ nats * 1.442695040889 // convert to bits, multiply by 1/log(2)
}
*/
/*
// Entropy estimate of distribution via nearest-neighbour distances, in BITS by default.
// See J.ÊKybic. Incremental updating of nearest neighbor-based high-dimensional entropy estimation. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSPÕ06), volumeÊ3, 2006.
entropyNN { |units=\bits|
var n, val, d, constant;
d = this.location.size; // num dims
n = this.size.asFloat; // num data
constant = 0.57721566490153 // == Euler-Mascheroni constant
+ log((2**d) * (n - 1));
val = this.allNearest.sumF{|res|
if(res.value[1]==0, 0, {d * log(res.value[1])})
+ constant
} / n;
^units.switch(
\bits,
{ val * 1.442695040889 }, // Convert to bits, multiply by 1/log(2)
// nats is default:
val
);
// ^ nats * 1.442695040889 // convert to bits, multiply by 1/log(2)
}
*/
} // End class