-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_semi_A.py
473 lines (385 loc) · 19.4 KB
/
train_semi_A.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
import argparse
import datetime
import random
import time
from pathlib import Path
import torch
from torch.utils.data import DataLoader, DistributedSampler
from torch.utils.data import Dataset
import os.path as osp
from PIL import Image
from crowd_A import build_dataset_partial
from crowd_A import build_dataset_unsup
# from engine_semi_ema import *
from models import build_model_confi
import os
import time
from tensorboardX import SummaryWriter
import pickle
from sklearn.metrics import pairwise_distances
from scipy.optimize import linear_sum_assignment
from engine_semi_A import *
import warnings
warnings.filterwarnings('ignore')
def get_args_parser():
parser = argparse.ArgumentParser('Set parameters for training P2PNet', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=8, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=3500, type=int)
parser.add_argument('--lr_drop', default=3500, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
# * Backbone
parser.add_argument('--backbone', default='vgg16_bn', type=str,
help="Name of the convolutional backbone to use")
# * Matcher
parser.add_argument('--set_cost_class', default=1, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_point', default=0.05, type=float,
help="L1 point coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--point_loss_coef', default=0.0002, type=float)
parser.add_argument('--eos_coef', default=0.5, type=float,
help="Relative classification weight of the no-object class")
parser.add_argument('--row', default=2, type=int,
help="row number of anchor points")
parser.add_argument('--line', default=2, type=int,
help="line number of anchor points")
# dataset parameters
parser.add_argument('--dataset_file', default='SHHA')
parser.add_argument('--data_root', default='./new_public_density_data',
help='path where the dataset is')
parser.add_argument('--output_dir', default='./log',
help='path where to save, empty for no saving')
parser.add_argument('--checkpoints_dir', default='./ckpt',
help='path where to save checkpoints, empty for no saving')
parser.add_argument('--tensorboard_dir', default='./runs',
help='path where to save, empty for no saving')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--eval_freq', default=5, type=int,
help='frequency of evaluation, default setting is evaluating in every 5 epoch')
parser.add_argument('--gpu_id', default=0, type=int, help='the gpu used for training')
parser.add_argument('--confi_weight', default=1.0, type = float)
parser.add_argument('--label_pro',type=str, default='10')
parser.add_argument('--un_weight', default=1.0, type = float)
parser.add_argument('--in_epoch',type=int, default=10)
parser.add_argument('--end_pro',type=float, default=0.5)
parser.add_argument('--engine_type', type = str, default = 'type_0')
return parser
def crowd_wasserstein(pt1, pt2, punish_side = 64):
if len(pt1) == 0 and len(pt2) == 0:
return 0
elif len(pt1) == 0 and len(pt2) > 0:
return punish_side * np.sqrt(2)
elif len(pt1) > 0 and len(pt2) == 0:
return punish_side * np.sqrt(2)
cost = pairwise_distances(pt1, pt2)
row_ind, col_ind = linear_sum_assignment(cost)
diff = np.maximum(len(pt1), len(pt2)) - np.minimum(len(pt1), len(pt2))
total_cost = cost[row_ind, col_ind].sum() + diff * punish_side * np.sqrt(2)
total_cost = total_cost/ np.maximum(len(pt1), len(pt2))
return total_cost
def confi_gen(img_ink, tar_ink, pre_tar):
# img_ink = img_ink
img_pr = {}
pre_pr = {}
conf = np.zeros([2,2])
for xindex in range(2):
for yindex in range(2):
tar_part = tar_ink[xindex*64:(xindex*64 + 64), yindex*64:(yindex*64 + 64)]
pre_part = pre_tar[xindex*64:(xindex*64 + 64), yindex*64:(yindex*64 + 64)]
tar_dots = np.array(np.where( tar_part >0 ) ).T
pre_dots = np.array(np.where( pre_part >0 ) ).T
conf[xindex, yindex] = crowd_wasserstein(tar_dots, pre_dots, punish_side = 64)
img_pr[(xindex, yindex)] = img_ink[:, xindex*64:(xindex*64 + 64), yindex*64:(yindex*64 + 64)].numpy()
pre_pr[(xindex, yindex)] = tar_ink[ xindex*64:(xindex*64 + 64), yindex*64:(yindex*64 + 64)].numpy()
return conf, img_pr, pre_pr
def confi_acumu( model, t_loader, epoch ):
model.eval()
img_list_pp = []
tar_list_pp = []
conf_list_pp = []
for img, tar, names in t_loader:
outputs,_ = model(img.cuda())
for ink in range(img.size()[0]):
outputs_scores = torch.nn.functional.softmax(outputs['pred_logits'], -1)[:, :, 1][ink]
outputs_points = outputs['pred_points'][ink]
points = outputs_points[outputs_scores >0.5].detach().cpu().numpy().tolist()
points = np.array(points)
points[points >= 128] = 127
predict_tar = np.zeros([128,128])
if len(points) == 0:
pass
else:
predict_tar[points[:,1].astype(int), points[:,0].astype(int)] = 1
conf_s, img_ppp, tar_ppp = confi_gen(img[ink] ,tar[ink][0], predict_tar)
if epoch == 0:
train_dict[names[ink]] = conf_s
else:
train_dict[names[ink]] = train_dict[names[ink]] + conf_s
for x_index in range(2):
for y_index in range(2):
img_list_pp.append( img_ppp[(x_index,y_index)] )
tar_list_pp.append( tar_ppp[(x_index,y_index)] )
conf_list_pp.append( train_dict[names[ink]][x_index, y_index] )
# train_dict_detail[names[ink]] = detail_img
# train_dict_conf[names[ink]] = train_dict[names[ink]]
return img_list_pp, tar_list_pp, conf_list_pp
# print('accumu_time: ' + str(time.time() - start))
def ema_models(model_1, model_2, factor = 0):
for key_item_1, key_item_2 in zip(model_1.state_dict().items(), model_2.state_dict().items()):
key_item_1[1].copy_(key_item_1[1] * factor + (1 - factor) * key_item_2[1])
def main(args):
os.environ["CUDA_VISIBLE_DEVICES"] = '{}'.format(args.gpu_id)
# create the logging file
run_log_name = os.path.join(args.output_dir, 'run_log.txt')
with open(run_log_name, "w") as log_file:
log_file.write('Eval Log %s\n' % time.strftime("%c"))
if args.frozen_weights is not None:
assert args.masks, "Frozen training is meant for segmentation only"
# backup the arguments
print(args)
with open(run_log_name, "a") as log_file:
log_file.write("{}".format(args))
device = torch.device('cuda')
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# get the P2PNet model
print(1)
model, criterion = build_model_confi(args, training=True)
teacher_model,_ = build_model_confi(args, training=True)
# move to GPU
print(1)
model.to(device)
teacher_model.to(device)
criterion.to(device)
print(1)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
# use different optimation params for different parts of the model
param_dicts = [
{"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
},
]
# Adam is used by default
optimizer = torch.optim.Adam(param_dicts, lr=args.lr)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
# create the dataset
loading_data = build_dataset_partial(args=args)
unloading_data = build_dataset_unsup(args=args)
# create the training and valiation set
if args.label_pro == '10':
i_list = 'label_list/sha-10.txt'
elif args.label_pro == '5':
i_list = 'label_list/sha-5.txt'
elif args.label_pro == '40':
i_list = 'label_list/sha-40.txt'
train_set, val_set = loading_data(args.data_root, i_list)
untrain_set, _ = unloading_data(args.data_root, i_list)
# create the sampler used during training
sampler_train = torch.utils.data.RandomSampler(train_set)
sampler_val = torch.utils.data.SequentialSampler(val_set)
unsampler_train = torch.utils.data.RandomSampler(untrain_set)
# unsampler_val = torch.utils.data.SequentialSampler(unval_set)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=False)
unbatch_sampler_train = torch.utils.data.BatchSampler(
unsampler_train, args.batch_size, drop_last=False)
# the dataloader for training
data_loader_train = DataLoader(train_set, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn_crowd, num_workers=args.num_workers)
undata_loader_train = DataLoader(untrain_set, batch_sampler=unbatch_sampler_train,
collate_fn=utils.collate_fn_crowd, num_workers=args.num_workers)
data_loader_val = DataLoader(val_set, 1, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn_crowd, num_workers=args.num_workers)
if args.frozen_weights is not None:
checkpoint = torch.load(args.frozen_weights, map_location='cpu')
model_without_ddp.detr.load_state_dict(checkpoint['model'])
# resume the weights and training state if exists
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
print("Start training")
start_time = time.time()
# save the performance during the training
mae = []
mse = []
# the logger writer
writer = SummaryWriter(args.tensorboard_dir)
step = 0
# training starts here
for epoch in range(args.start_epoch, args.epochs):
t1 = time.time()
img_list_add, tar_list_add, conf_list_add = confi_acumu( model, data_loader_t, epoch )
# if epoch ==50:
# with open('conf_img_10/res_img.pickle', 'wb') as handle:
# pickle.dump(img_list_add, handle, protocol=pickle.HIGHEST_PROTOCOL)
# # with open('conf_img_10/res_dict.json', 'w') as f:
# # json.dump(train_dict_detail, f)
# with open('conf_img_10/res_tar.pickle', 'wb') as handle:
# pickle.dump(tar_list_add, handle, protocol=pickle.HIGHEST_PROTOCOL)
# with open('conf_img_10/res_conf.pickle', 'wb') as handle:
# pickle.dump(conf_list_add, handle, protocol=pickle.HIGHEST_PROTOCOL)
# np.save( 'conf_img_10/res_conf.npy' , np.array(conf_list_add) )
stat, c_loss = train_one_epoch(
model, teacher_model, criterion, data_loader_train, optimizer, device, epoch, train_dict, data_loader_t,
undata_loader_train,img_list_add, tar_list_add, conf_list_add, args.clip_max_norm, args.confi_weight, args.un_weight, args.in_epoch, args.end_pro)
ema_decay = min( (0.01* epoch) ** (1/2.5) ,0.99)
ema_models(teacher_model, model, ema_decay)
# record the training states after every epoch
if writer is not None:
with open(run_log_name, "a") as log_file:
log_file.write("loss/loss@{}: {}".format(epoch, stat['loss']))
log_file.write("loss/loss_ce@{}: {}".format(epoch, stat['loss_ce']))
log_file.write("loss/loss_confi@{}: {}".format(epoch, c_loss))
writer.add_scalar('loss/loss', stat['loss'], epoch)
writer.add_scalar('loss/loss_ce', stat['loss_ce'], epoch)
writer.add_scalar('loss/loss_confi', c_loss, epoch)
t2 = time.time()
print('[ep %d][lr %.7f][%.2fs]' % \
(epoch, optimizer.param_groups[0]['lr'], t2 - t1))
with open(run_log_name, "a") as log_file:
log_file.write('[ep %d][lr %.7f][%.2fs]' % (epoch, optimizer.param_groups[0]['lr'], t2 - t1))
# change lr according to the scheduler
lr_scheduler.step()
# save latest weights every epoch
checkpoint_latest_path = os.path.join(args.checkpoints_dir, 'latest.pth')
torch.save({
'model': model_without_ddp.state_dict(),
}, checkpoint_latest_path)
torch.save({
'model': teacher_model.state_dict(),
}, os.path.join(args.checkpoints_dir, 'latest_teacher.pth'))
# run evaluation
if epoch % args.eval_freq == 0 and epoch != 0:
t1 = time.time()
result = evaluate_crowd_no_overlap(model, data_loader_val, device)
t2 = time.time()
mae.append(result[0])
mse.append(result[1])
# print the evaluation results
print('=======================================test=======================================')
print("mae:", result[0], "mse:", result[1], "time:", t2 - t1, "best mae:", np.min(mae), )
with open(run_log_name, "a") as log_file:
log_file.write("mae:{}, mse:{}, time:{}, best mae:{}".format(result[0],
result[1], t2 - t1, np.min(mae)))
print('=======================================test=======================================')
# recored the evaluation results
if writer is not None:
with open(run_log_name, "a") as log_file:
log_file.write("metric/mae@{}: {}".format(step, result[0]))
log_file.write("metric/mse@{}: {}".format(step, result[1]))
writer.add_scalar('metric/mae', result[0], step)
writer.add_scalar('metric/mse', result[1], step)
step += 1
# save the best model since begining
if abs(np.min(mae) - result[0]) < 0.01:
checkpoint_best_path = os.path.join(args.checkpoints_dir, 'best_' + str(epoch) + '_mae.pth')
torch.save({
'model': model_without_ddp.state_dict(),
}, checkpoint_best_path)
torch.save({
'model': teacher_model.state_dict(),
}, os.path.join(args.checkpoints_dir, 'best_teacher_mae.pth'))
# total time for training
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
class crowd_test(Dataset):
def __init__(self, imgdir, maskdir, img_trans, mask_trans):
super(crowd_test, self).__init__()
self.imgdir = imgdir
self.maskdir = maskdir
self.imglist = os.listdir(imgdir)
self.masklist = [item.replace('.png', '_label.png') for item in self.imglist]
self.img_trans = img_trans
self.mask_trans = mask_trans
# print(train_transforms)
def __len__(self):
return len(self.imglist)
def __getitem__(self, idx):
image = cv2.imread( osp.join(self.imgdir, self.imglist[idx]) )
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
mask = Image.open( osp.join(self.maskdir, self.masklist[idx]) )
image = self.img_trans(image)
# print(image.size())
# print(self.imglist[idx])
mask = self.mask_trans(mask)
return image, mask, self.imglist[idx].split('.png')[0]
if __name__ == '__main__':
parser = argparse.ArgumentParser('P2PNet-confi training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if not os.path.exists(args.checkpoints_dir):
os.makedirs(args.checkpoints_dir)
img_transform = standard_transforms.Compose([
standard_transforms.ToTensor(),
standard_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
mask_transform = standard_transforms.Compose([
standard_transforms.ToTensor(),
# standard_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
if args.label_pro == '10':
uncertain_folder = 'part_A/uncertain_data_10/'
elif args.label_pro == '5':
uncertain_folder = 'part_A/uncertain_data_5/'
elif args.label_pro == '40':
uncertain_folder = 'part_A/uncertain_data_40/'
dataset_t_ik = crowd_test(
imgdir = uncertain_folder,
maskdir='part_A/uncertain_label/',
img_trans = img_transform,
mask_trans = mask_transform
)
t_sampler = torch.utils.data.RandomSampler(dataset_t_ik)
data_loader_t = torch.utils.data.DataLoader(
dataset_t_ik, batch_size=32,
sampler=t_sampler, num_workers=15)
train_dict = {}
train_dict_detail = {}
train_dict_conf = {}
# for _,_, namm in data_loader_t:
# for lio in range(len(namm)):
# train_dict[namm[lio]] = np.zeros([2,2])
# for _,_, namm in data_loader_v:
# for lio in range(len(namm)):
# test_dict[namm[lio]] = np.zeros([2,2])
main(args)
import pickle
# with open('conf_img_10/res_dict.pickle', 'wb') as handle:
# pickle.dump(train_dict_detail, handle, protocol=pickle.HIGHEST_PROTOCOL)
# with open('conf_img_10/res_dict.json', 'w') as f:
# json.dump(train_dict_detail, f)
# with open('conf_img_10/res_conf.pickle', 'wb') as handle:
# pickle.dump(train_dict_conf, handle, protocol=pickle.HIGHEST_PROTOCOL)
# with open('conf_img_10/res_conf.json', 'w') as f:
# json.dump(train_dict_conf, f)
# np.save( 'conf_img_10/res_dict.npy' , train_dict_detail)
# np.save( 'conf_img_10/res_conf.npy' , train_dict_conf)
# for na in train_dict.keys():
# np.save( 'conf_train_un10/' + na +'.npy', train_dict[na] )
# for na in test_dict.keys():
# np.save( 'conf_test_f_un10/' + na +'.npy', test_dict[na] )