-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathutils.py
executable file
·204 lines (159 loc) · 6.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import torch.nn as nn
import numpy as np
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class RegressionTransform(nn.Module):
def __init__(self,mean=None,std_box=None,std_ldm=None):
super(RegressionTransform, self).__init__()
if mean is None:
#self.mean = torch.from_numpy(np.array([0, 0, 0, 0]).astype(np.float32)).cuda()
self.mean = torch.from_numpy(np.array([0, 0, 0, 0]).astype(np.float32))
else:
self.mean = mean
if std_box is None:
#self.std_box = torch.from_numpy(np.array([0.1, 0.1, 0.2, 0.2]).astype(np.float32)).cuda()
self.std_box = torch.from_numpy(np.array([0.1, 0.1, 0.2, 0.2]).astype(np.float32))
else:
self.std_box = std_box
if std_ldm is None:
#self.std_ldm = (torch.ones(1,10) * 0.1).cuda()
self.std_ldm = (torch.ones(1,10) * 0.1)
def forward(self,anchors,bbox_deltas,ldm_deltas,img):
widths = anchors[:, :, 2] - anchors[:, :, 0]
heights = anchors[:, :, 3] - anchors[:, :, 1]
ctr_x = anchors[:, :, 0] + 0.5 * widths
ctr_y = anchors[:, :, 1] + 0.5 * heights
# Rescale
ldm_deltas = ldm_deltas * self.std_ldm.cuda()
bbox_deltas = bbox_deltas * self.std_box.cuda()
bbox_dx = bbox_deltas[:, :, 0]
bbox_dy = bbox_deltas[:, :, 1]
bbox_dw = bbox_deltas[:, :, 2]
bbox_dh = bbox_deltas[:, :, 3]
# get predicted boxes
pred_ctr_x = ctr_x + bbox_dx * widths
pred_ctr_y = ctr_y + bbox_dy * heights
pred_w = torch.exp(bbox_dw) * widths
pred_h = torch.exp(bbox_dh) * heights
pred_boxes_x1 = pred_ctr_x - 0.5 * pred_w
pred_boxes_y1 = pred_ctr_y - 0.5 * pred_h
pred_boxes_x2 = pred_ctr_x + 0.5 * pred_w
pred_boxes_y2 = pred_ctr_y + 0.5 * pred_h
pred_boxes = torch.stack([pred_boxes_x1, pred_boxes_y1, pred_boxes_x2, pred_boxes_y2], dim=2)
# get predicted landmarks
pt0_x = ctr_x + ldm_deltas[:,:,0] * widths
pt0_y = ctr_y + ldm_deltas[:,:,1] * heights
pt1_x = ctr_x + ldm_deltas[:,:,2] * widths
pt1_y = ctr_y + ldm_deltas[:,:,3] * heights
pt2_x = ctr_x + ldm_deltas[:,:,4] * widths
pt2_y = ctr_y + ldm_deltas[:,:,5] * heights
pt3_x = ctr_x + ldm_deltas[:,:,6] * widths
pt3_y = ctr_y + ldm_deltas[:,:,7] * heights
pt4_x = ctr_x + ldm_deltas[:,:,8] * widths
pt4_y = ctr_y + ldm_deltas[:,:,9] * heights
pred_landmarks = torch.stack([
pt0_x, pt0_y, pt1_x, pt1_y, pt2_x, pt2_y, pt3_x, pt3_y, pt4_x,pt4_y
],dim=2)
# clip bboxes and landmarks
B,C,H,W = img.shape
pred_boxes[:,:,::2] = torch.clamp(pred_boxes[:,:,::2], min=0, max=W)
pred_boxes[:,:,1::2] = torch.clamp(pred_boxes[:,:,1::2], min=0, max=H)
pred_landmarks[:,:,::2] = torch.clamp(pred_landmarks[:,:,::2], min=0, max=W)
pred_landmarks[:,:,1::2] = torch.clamp(pred_landmarks[:,:,1::2], min=0, max=H)
return pred_boxes, pred_landmarks
def nms(boxes,scores,iou_threshold):
boxes = boxes.cpu().numpy()
score = scores.cpu().numpy()
# coordinates of bounding boxes
start_x = boxes[:, 0]
start_y = boxes[:, 1]
end_x = boxes[:, 2]
end_y = boxes[:, 3]
# Picked bounding boxes
picked_boxes = []
picked_score = []
# Compute areas of bounding boxes
areas = (end_x - start_x + 1) * (end_y - start_y + 1)
# Sort by confidence score of bounding boxes
order = np.argsort(score)
# Iterate bounding boxes
while order.size > 0:
# The index of largest confidence score
index = order[-1]
# Pick the bounding box with largest confidence score
picked_boxes.append(boxes[index])
picked_score.append(score[index])
a=start_x[index]
b=order[:-1]
c=start_x[order[:-1]]
# Compute ordinates of intersection-over-union(IOU)
x1 = np.maximum(start_x[index], start_x[order[:-1]])
x2 = np.minimum(end_x[index], end_x[order[:-1]])
y1 = np.maximum(start_y[index], start_y[order[:-1]])
y2 = np.minimum(end_y[index], end_y[order[:-1]])
# Compute areas of intersection-over-union
w = np.maximum(0.0, x2 - x1 + 1)
h = np.maximum(0.0, y2 - y1 + 1)
intersection = w * h
# Compute the ratio between intersection and union
ratio = intersection / (areas[index] + areas[order[:-1]] - intersection)
left = np.where(ratio < iou_threshold)
order = order[left]
picked_boxes = torch.Tensor(picked_boxes)
picked_score = torch.Tensor(picked_score)
return picked_boxes, picked_score