This repository provides the benchmark for Cycling Close Pass Near Miss (Cyc-CP).
- Clone the repo:
git clone https://github.com/SustainableMobility/cyc-cp.git
- Install the package:
cd cyc-cp
pip install -e .
cd cyc-cp
- Train crnn or i3d model following:
python ./cnm/scene_lvl/i3d/i3d.py --csv_data_path path/to/csv_data --image_data_path path/to/image_data --exp_data_dir path/to/save/exp_data
python ./cnm/scene_lvl/crnn/crnn.py --csv_data_path path/to/csv_data --image_data_path path/to/image_data --exp_data_dir path/to/save/exp_data
- where the meaning of the arguments can be found in the code help. Specifically,
- --csv_data_path: The file path of the .csv file with dataset info.
- --image_data_path: The directory path saving all video frames.
- --exp_data_dir: The directory to save results to.
- Victorian On-bike Cycling (legacy): available on Monash Bridges
- Victorian On-bike Cycling (ongoing): under collection ...
- CARLA (simulation): available on Monash Bridges
- NuScences: available on https://www.nuscenes.org/
- Disk: to save all datasets about > 2TB disk space is required.
- RAM and GPU: (only tested on Victorian On-bike Cycling (legacy))
- Scene-level:
- I3D: (Batch_size:16, image_size: 256x342, frames: [-5, 15])
- GPU memory: 7.5GB, CPU memory: 3 GB (RTX-2080 has 8 GB memory, so that’s why [-5, 15] frames are included in a video clip.)
- CRNN: (Batch_size: 16, image_size: 224x224, frame: [20,25])
- GPU memory: 3 GB, CPU memory: 6 GB
- I3D: (Batch_size:16, image_size: 256x342, frames: [-5, 15])
- Instance-level (TODO)
- Scene-level:
More Notes about the project can be found in the shared google doc.