-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcreate_data.py
214 lines (173 loc) · 9.27 KB
/
create_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import random
import os
import sys
import torch
import logging
import numpy as np
from matplotlib import cm, pyplot as plt
import pandas as pd
import geopandas as gpd
from geopandas import GeoDataFrame
from shapely.geometry import Point, Polygon
from tqdm import tqdm
import rasterio as rs
import rasterio
from utils.utils import load_geotiff, create_data, pixel_to_coord, coord_to_pixel_loaded, compute_pixel_size, kd_tree_object_count
from utils.constants import US_STATES, AFRICAN_COUNTRIES, CUTSIZEX, CUTSIZEY, GT_MS_COUNT, GT_OPEN_BUILDINGS_COUNT
import argparse
from scipy import spatial
import pdb
parser = argparse.ArgumentParser()
parser.add_argument('--country', type=str, default="us", help="us, uganda, tanzania, africa")
parser.add_argument('--district', type=str, default="all", help="new_york, north_dakota, tennessee, uganda")
parser.add_argument('--data_root', type=str, default="./data/sample_data")
parser.add_argument('--all_pixels', action='store_true')
parser.add_argument('--sampling_method', type=str, default="NL", help="NL, population")
parser.add_argument('--overwrite', action='store_true')
parser.add_argument('--seed', type=int, default=1234)
parser.add_argument('--total_sample_size', type=int, default=2000)
parser.add_argument('--satellite_size', type=float, default=640 * 0.0003)
args = parser.parse_args()
device = "cpu"
args.device = device
country = args.country
district = args.district
sampling_method = args.sampling_method
seed = args.seed
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
if __name__ == "__main__":
# Directories to the covariate data
nl_data = f"{args.data_root}/covariates/NL_raster.tif"
pop_data = f"{args.data_root}/covariates/population_raster.tif"
print("Loading covariate data...")
raster_nl = rs.open(nl_data)
raster_nl_img = load_geotiff(nl_data)
raster_pop = rs.open(pop_data)
raster_pop_img = load_geotiff(pop_data)
print("Data loaded")
# Load the base raster to conduct uniform sampling on
if sampling_method == 'population':
raster_data = raster_pop
raster_data_img = raster_pop_img
elif sampling_method == 'NL':
raster_data = raster_nl
raster_data_img = raster_nl_img
else:
raise NotImplementedError
if district == 'all':
district_list = [country]
else:
district_list = [district]
for district in district_list:
try:
file = f'{args.data_root}/{sampling_method}/sample_{country}_{district}_All_area.pth'
if os.path.isfile(file) and (not args.overwrite):
continue
logging.info(f"processing {country} {district}")
print(f"processing {country} {district}", flush=True)
if country in ['us', 'bangladesh']:
cutsizex = CUTSIZEX[sampling_method][country]
cutsizey = CUTSIZEY[sampling_method][country]
else:
cutsizex = CUTSIZEX[sampling_method][district]
cutsizey = CUTSIZEY[sampling_method][district]
print("Country {}, district {}".format(country, district))
pth_mask = f'{args.data_root}/{sampling_method}/{cutsizex[0]}_{cutsizex[1]}_{cutsizey[0]}_{cutsizey[1]}_{district}_mask.pth'
if not os.path.isfile(pth_mask):
print("mask {} not exist {} {}".format(pth_mask, country, district), flush=True)
continue
binary_m = torch.load(f'{args.data_root}/{sampling_method}/{cutsizex[0]}_{cutsizex[1]}_{cutsizey[0]}_{cutsizey[1]}_{district}_mask.pth')
cut = binary_m
print(binary_m.sum())
# Load ground truth building dataset
if country == 'us':
if district in US_STATES:
gt_count = GT_MS_COUNT[district]
elif district == 'all':
gt_count = GT_MS_COUNT[country]
[center_x, center_y] = torch.load(f"{args.data_root}/ms_building_footprint/us/{''.join(district.split('_'))}_center.pth")
center_x, center_y = np.array(center_x), np.array(center_y)
elif country == 'bangladesh':
data_csv = pd.read_csv(f"{args.data_root}/brick_data/all_pos_without_shape_coords.csv")
center_x = np.array(data_csv['long'])
center_y = np.array(data_csv['lat'])
else:
[center_x, center_y] = torch.load(f"{args.data_root}/open_buildings/{district}_center.pth")
center_x, center_y = np.array(center_x), np.array(center_y)
#####################
## Positive samples
#####################
print('Creating positive data...')
np.random.seed(args.seed)
ix = np.random.choice(range(len(center_x)), size=args.total_sample_size, replace=False)
pos_lons = np.array(center_x[ix])
pos_lats = np.array(center_y[ix])
print('Collecting object count...')
points = np.stack([center_x, center_y], axis=1)
samples = np.stack([pos_lons, pos_lats], axis=1)
print("Building tree...")
tree = spatial.KDTree(points)
print("done")
num_neighbor = 5000
object_count_array = kd_tree_object_count(args.satellite_size, samples, pos_lats, pos_lons, tree, center_x, center_y, num_neighbor=num_neighbor)
print('Object count collected')
probs_nl, _ = coord_to_pixel_loaded(pos_lons, pos_lats, raster_nl_img, raster_nl, shiftedx=0, shiftedy=0, plot=False)
probs_pop, _ = coord_to_pixel_loaded(pos_lons, pos_lats, raster_pop_img, raster_pop, shiftedx=0, shiftedy=0, plot=False)
os.makedirs(f'{args.data_root}/{sampling_method}/', exist_ok=True)
file = f'{args.data_root}/{sampling_method}/sample_{args.total_sample_size}_{country}_{district}_True.pth'
if not os.path.isfile(file) or args.overwrite:
torch.save([pos_lats, pos_lons, probs_nl, probs_pop, object_count_array], file)
del(object_count_array)
print('Positive data created')
#####################
## Negative samples
#####################
print('Creating negative data...')
_, pixels, _ = create_data(cut, all_pixels=False,
uniform=True,
N=args.total_sample_size,
binary_m=binary_m)
data_coordinate = pixel_to_coord(pixels[:, 0], pixels[:, 1], cutsizex[0], cutsizey[0],
raster_data.transform)
neg_lons = data_coordinate[:, 0]
neg_lats = data_coordinate[:, 1]
print('Collecting object count...')
samples = np.stack([neg_lons, neg_lats], axis=1)
num_neighbor = 5000
object_count_array = kd_tree_object_count(args.satellite_size, samples, neg_lats, neg_lons, tree, center_x, center_y,
num_neighbor=num_neighbor)
probs_nl, _ = coord_to_pixel_loaded(neg_lons, neg_lats, raster_nl_img, raster_nl, shiftedx=0, shiftedy=0, plot=False)
probs_pop, _ = coord_to_pixel_loaded(neg_lons, neg_lats, raster_pop_img, raster_pop, shiftedx=0, shiftedy=0, plot=False)
os.makedirs(f'{args.data_root}/{sampling_method}/', exist_ok=True)
file = f'{args.data_root}/{sampling_method}/sample_{args.total_sample_size}_{country}_{district}_False.pth'
if not os.path.isfile(file) or args.overwrite:
torch.save([neg_lats, neg_lons, probs_nl, probs_pop, object_count_array], file)
del(object_count_array)
print('Negative data created')
#####################
## All test samples
#####################
print('Creating all test data...')
_, pixels, _ = create_data(cut, all_pixels=True,
uniform=True,
N=20000,
binary_m=binary_m)
data_coordinate = pixel_to_coord(pixels[:, 0], pixels[:, 1], cutsizex[0], cutsizey[0],
raster_data.transform)
lons = data_coordinate[:, 0]
lats = data_coordinate[:, 1]
probs_nl, _ = coord_to_pixel_loaded(lons, lats, raster_nl_img, raster_nl, shiftedx=0, shiftedy=0, plot=False)
probs_pop, _ = coord_to_pixel_loaded(lons, lats, raster_pop_img, raster_pop, shiftedx=0, shiftedy=0, plot=False)
print('Collecting pixel sizes...')
s_pix = compute_pixel_size(lats, lons, raster_data_img, raster_data)
print('Pixel sizes collected')
os.makedirs(f'{args.data_root}/{sampling_method}/', exist_ok=True)
file = f'{args.data_root}/{sampling_method}/sample_{country}_{district}_All_area.pth'
if not os.path.isfile(file) or args.overwrite:
torch.save([lats, lons, s_pix, probs_nl, probs_pop], file)
print('Test data created')
except:
logging.info(f"ERROR {country} {district}")
print(f"ERROR {country} {district}\n", flush=True)